
ON KOHNEN PLUS-SPACE OF JACOBI FORMS OF HALF
INTEGRAL WEIGHT OF MATRIX INDEX

SHUICHI HAYASHIDA

Abstract. We introduce a plus-space of Jacobi forms, which is a certain subspace
of Jacobi forms of half-integral weight of matrix index. This is an analogue to the
Kohnen plus-space in the framework of Jacobi forms. We shall show a linear isomor-
phism between the plus-space of Jacobi forms and the space of Jacobi forms of integral
weight of certain matrix index. Moreover, we shall show that this linear isomorphism
is compatible with the action of Hecke operators of both spaces. This result is a kind
of generalization of Eichler-Zagier-Ibukiyama correspondence, which is an isomorphism
between the generalized plus-space of Siegel modular forms of general degree and Jacobi
forms of index 1 of general degree.

1. Introduction

The Kohnen plus-space plays an important role in the theory of modular forms of
half-integral weight. In the present article we will introduce an analogue of Kohnen
plus-space for Jacobi forms of half-integral weight of certain matrix indices.
Let M1 ∈ L∗

r be a half-integral symmetric matrix of size r and L ∈ Mr,1(Z) be a
column vector of size r such that the matrix

M :=

(
M1

1
2
L

1
2
tL 1

)
∈ L∗

r+1

is positive-definite. We put

M := 4M1 − LtL ∈ L∗
r.

Remark that M is positive-definite.

Let k and n be non-negative integers. Let J
(n)+

k− 1
2
,M

be the plus-space of Jacobi forms

(see §3 for the definitinon) which is a certain subspace of J
(n)

k− 1
2
,M
, where J

(n)

k− 1
2
,M

denotes

the space of Jacobi forms of weight k − 1
2
and index M on Γ

(n)
0 (4), and where Γ

(n)
0 (4)

consists of matrix ( A B
C D ) ∈ Γn := Sp(n,Z) such that C ≡ 0n mod 4. Let J

(n)
k,M be the
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2 S. HAYASHIDA

space of Jacobi forms of weight k and index M on Γn. We denote by J
cusp (n)+

k− 1
2
,M

(resp.

J
cusp (n)
k,M ) the subspace of Jacobi cusp forms in J

(n)+

k− 1
2
,M

(resp. J
(n)
k,M). The main result is

Theorem 1.1. Let k be an even integer. We obtain linear isomorphisms

J
(n)+

k− 1
2
,M

∼= J
(n)
k,M

and

J
cusp (n)+

k− 1
2
,M

∼= J
cusp (n)
k,M

as Hecke algebra modules.

Remark that we can regard Jacobi forms as vector valued modular forms with cer-
tain (projective) representations of Γn := Sp(n,Z). Therefore, the above isomorphisms
are certain isomorphisms between certain vector valued modular forms with respect to
Mp(n,Z), which is the metaplectic cover of Γn.
In this paper we shall also give a necessary and sufficient condition of Jacobi cusp

forms with a bound of the absolute value of the Jacobi forms (Lemma 2.1). The half of
the statement of Lemma 2.1 has already been shown by Murase [4, Lemma 1.4].
We also remark that Theorem 1.1 gives a generalization of the result given by Ibukiyama

[3, Theorem 1] (it is the case r = 0). The most part of the proof of Theorem 1.1 is an
analogue to the one of [3, Theorem 1]. However, the calculations are more complicate,
because we have to treat the Jacobi group instead of the Siegel modular group.
The importance of the plus space of Jacobi forms will be recognized, when one consid-

ers the Fourier-Jacobi expansion of Siegel modular forms of half-integral weight which
belong to the plus space of Siegel modular forms. In particular, a weak version of
Theorem 1.1 has been used in [2] to prove a certain lifting from pairs of two elliptic
modular forms to Siegel modular forms of half-integral weight of even degrees. Here a

weak version means that we have treated in [2] a certain subspace of J
+(n)

k− 1
2
,M

(M ∈ L∗
2,

r = 1), which is obtained through the Fourier-Jacobi expansion of Siegel modular forms
belonging to the plus space of Siegel modular forms (see [2, Lemma 4.2] for the detail).
The paper is organized as follows. In Section 2 we give a notation and definitions

what we need later to state our result precisely, and we shall show a lemma which states
a necessary and sufficient condition of Jacobi cusp forms (Lemma 2.1). In Section 3
we shall introduce the plus-space of Jacobi forms. In Section 4 we shall prove the
bijection of the linear map appeared in Theorem 1.1, while in Section 5 we shall prove
the compatibility between this linear map and the action of Hecke operators of both
spaces.
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2. Notation

We denote by R+ the set of all positive real numbers. The symbol Mn,m(R) denotes
the set of n × m matrices with entries in a ring R, and we put Mn(R) := Mn,n(R).
The letter Symn(R) denotes the set of symmetric matrices of size n with entries in a
ring R. We denote by L∗

n the set of all semi positive-definite, half-integral symmetric
matrices of size n, and we denote by L+

n all positive definite matrices in L∗
n. We write

tB for the transpose of a matrix B. For two matrices A ∈ Mn(R) and B ∈ Mn,m(R)
we write A[B] := tBAB. The identity matrix (resp. zero matrix) of size n is denoted
by 1n (resp. 0n). The symbol tr(S) denotes the trace of a square matrix S and we put

e(S) := e2π
√
−1 tr(S) for a square matrix S. For square matrices a1, ..., an, we write the

diagonal matrix

( a1
...

an

)
as diag(a1, ..., an). For any odd prime p the symbol

(
∗
p

)
denotes the Legendre symbol.
The symbol Hn denotes the Siegel upper half space of degree n, and Sp(n,R) de-

notes the real symplectic group of size 2n. We put Γn := Sp(n,Z). We denote by

Mk− 1
2
(Γ

(n)
0 (4)) the vector space of Siegel modular forms of weight k− 1

2
of degree n. The

plus-space of Mk− 1
2
(Γ

(n)
0 (4)) is denoted by M+

k− 1
2

(Γ
(n)
0 (4)), which is a certain subspace

of Mk− 1
2
(Γ

(n)
0 (4)) and it is a generalization of Kohnen plus-space for general degree (cf.

Ibukiyama [3]). The symbol S+
k− 1

2

(Γ
(n)
0 (4)) denotes the vector space of all Siegel cusp

forms in M+
k− 1

2

(Γ
(n)
0 (4)).

2.1. Jacobi group. We put

GSp+(n,R) :=
{
M ∈ GL(2n,R) |M

(
0 1n

−1n 0

)
tM = γ

(
0 1n

−1n 0

)
with some γ ∈ R+

}
.

The number γ in the above set depends on the choice of M and is called the similitude
of M . For any M = ( A B

C D ) ∈ GSp+(n,R) and for any τ ∈ Hn, the linear fractional
transformation is defined by M · τ := (Aτ +B)(Cτ +D)−1.
We set

GJ
n,r :=

{
(M, [(λ, µ), κ]) |M ∈ GSp+(n,R), λ, µ ∈Mn,r(R), κ ∈ Symr(R)

}
.

By the embedding

(( A B
C D ) , [(λ, µ), κ]) →

(
A 0 B 0
0 γ1r 0 0
C 0 D 0
0 0 0 1r

)( 1n 0 0 µ
tλ 1r tµ tλµ+κ
0 0 1n −λ
0 0 0 1r

)
,
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we can regard GJ
n,r as a subgroup of GSp+(n+ r,R), where γ is the similitude of ( A B

C D ).

In particular, GJ
n,r is viewed as a semi direct product: GJ

n,r = GSp+(n,R) ⋉ Hn,r(R),
where

Hn,r(R) := {[(λ, µ), κ] |λ, µ ∈Mn,r(R), κ ∈ Symr(R)} .
For any M ∈ GSp+(n,R), h = [(λ, µ), κ], h′ = [(λ′, µ′), κ′] ∈ Hn,r(R) the composition
rule is given by

hh′ = [(λ+ λ′, µ+ µ′), κ+ κ′ − tλ′µ− tµλ′],

M−1hM = [(λ∗, µ∗), γ−1(κ+ tλµ)− tλ∗µ∗],

where

(
λ∗

µ∗

)
= γ−1tM

(
λ
µ

)
and where γ is the similitude of M . We call GJ

n,r the Jacobi

group. By abuse of language, for g = (( A B
C D ) , [(λ, µ), κ]) ∈ GJ

n,r we call γ the similitude
of g, if γ is the similitude of ( A B

C D ). For the sake of simplicity, if there is no confusion,
we write M for (M, [(0, 0), 0]) ∈ GJ

n,r and write [(λ, µ), κ] for (12n, [(λ, µ), κ]) ∈ GJ
n,r.

We set Hn,r(Z) := {[(λ, µ), κ] |λ, µ ∈Mn,r(Z), κ ∈ Symr(Z)}.
We define the action of GJ

n,r on Hn ×Mn,r(C): for any g = (( A B
C D ) , [(λ, µ), κ]) ∈ GJ

n,r

and for any (τ, z) ∈ Hn ×Mn,r(C), we define

g · (τ, z) := (( A B
C D ) · τ, γt(Cτ +D)−1(z + τλ+ µ)),

where γ ∈ R+ is the similitude of ( A B
C D ).

Let S ∈ Symr(R) and let l ∈ R. For any g = (( A B
C D ) , [(λ, µ), κ]) ∈ GJ

n,r and for any
(τ, z) ∈ Hn ×Mn,r(C) we set

Jl,S(g, (τ, z))

:= det(Cτ +D)le(γS((Cτ +D)−1C)[z + τλ+ µ])e(−γS(τ [λ] + 2tλz + 2tλµ+ κ)),

where we take the principal branch −π < arg(det(Cτ + D)) ≤ π, and where γ is the
similitude of g.
If l ∈ Z, the factor Jl,S(∗, ∗) satisfies the cocycle condition:

Jl,S(g1g2, (τ, z)) = Jl,S(g1, g2 · (τ, z))Jl,γ1S(g2, (τ, z)),

where g1, g2 ∈ GJ
n,r and where γ1 ∈ R+ is the similitude of g1. We define

(ϕ|l,Sg)(τ, z) := Jl,S(g, (τ, z))
−1ϕ(g · (τ, z))

for a function ϕ on Hn ×Mn,r(C) and for g ∈ GJ
n,r.

2.2. Covering group. The group G consists of (M,φ), such that M = ( A B
C D ) ∈

GSp+(n,R) and φ is a holomorphic function on Hn which satisfy the relation |φ(τ)|2 =
detM− 1

2 | det(Cτ +D)|. The group action of G is defined by (M1, φ1(τ)) · (M2, φ2(τ)) :=
(M1M2, φ1(M1 · τ)φ2(τ)) for (Mi, φi) ∈ G (i = 1, 2).
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We put θ(τ) := θn(τ) =
∑

p∈Mn,1(Z) e(
1
4
tpτp) for τ ∈ Hn. We denote by Γ

(n)
0 (4)∗ the

subgroup of G which consists of (M, θ(M · τ)θ(τ)−1) with M ∈ Γ
(n)
0 (4), where Γ

(n)
0 (4)

consists of matrix ( A B
C D ) ∈ Γn such that C ≡ 0n mod 4.

2.3. Jacobi forms of half-integral weight. For the definition of Jacobi forms of
integral weight, the reader is referred to Ziegler [6]. In this subsection we review a
definition of Jacobi forms of half-integral weight.
Let n, r ∈ Z>0 and k ∈ Z. A holomorphic function ϕ : Hn ×Mn,r(C) → C is called

a Jacobi form of weight k − 1
2
and index S ∈ L+

r on Γ
(n)
0 (4), if ϕ satisfies the following

three conditions:

(i) For any M∗ ∈ Γ
(n)
0 (4)∗,

ϕ|k− 1
2
,SM

∗ = ϕ.

Here we defined(
ϕ|k− 1

2
,S(M,φ)

)
(τ, z) := φ(τ)−2k+1e(−Stz(Cτ +D)−1Cz)ϕ(M · (τ, z))

for (M,φ) ∈ G (M = ( A B
C D )).

(ii) For any λ, µ ∈Mn,r(Z),
e(λStλτ + 2λStz)ϕ(τ, z + τλ+ µ) = ϕ(τ, z).

(iii) For any M ∈ Γn, the form ϕ2|2k−1,2SM has the Fourier expansion:

(ϕ2|2k−1,2SM)(τ, z) =
∑
N,R

CM(N,R) e

(
1

h
Nτ +Rtz

)
with a positive number h. Here, in the summation, N ∈ L∗

n and R ∈ Mn,r(Z)
run over all matrices such that 4h−1N −R(2S)−1tR ≥ 0.

For n ≥ 2, it is known that the condition (iii) follows from the other conditions by the
Koecher principle (cf. [6]). For a semi positive-definite matrix S ∈ L∗

r, the Jacobi forms
of index S is defined likely as in the case of integral weight (cf. [6, Def. 1.3.]).

For any half-integer k − 1
2
and for any S ∈ L∗

r we denote by J
(n)

k− 1
2
,S

the vector space

of Jacobi forms of weight k − 1
2
and index S on Γ

(n)
0 (4). For any integer l and for any

S ∈ L∗
r we denote by J

(n)
l,S the vector space of Jacobi forms of weight l and index S on

Γn.
Let ϕ ∈ J

(n)
l,S be a Jacobi form for l ∈ 1

2
Z. We call ϕ a Jacobi cusp form, if ϕ satisfies the

condition that for any M ∈ Γn the Fourier coefficients CM(N,R) satisfy CM(N,R) = 0
unless 4h−1N −R(2S)−1tR > 0.

Lemma 2.1. Let l ∈ 1
2
Z be an integer or a half-integer. Let ϕ be a Jacobi form of weight

l of index S ∈ L∗
r of degree n. Then ϕ is a Jacobi cusp form, if and only if

| detY l/2e−2π tr(Y −1S[tβ]) ϕ(τ, z)|
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is bounded on the domain Hn ×Mn,r(C). Here (τ, z) ∈ Hn ×Mn,r(C), Y = Im(τ) and
β = Im(z).

Proof. We shall show only the case S ∈ L+
r , since the proof for S ∈ L∗

r is similar.
We put g(τ, z) := detY l/2e−2π tr(Y −1S[tβ]) ϕ(τ, z). When l ∈ Z it is shown in [4, Lemma

1.4] that if |g(τ, z)| is bounded on Hn ×Mn,r(C), then ϕ is a Jacobi cusp form. When
l ∈ 1

2
Z, ϕ2 has weight 2l ∈ Z and index 2S. Thus, if |g(τ, z)| is bounded, then |g(τ, z)|2

is bounded and ϕ is a Jacobi cusp form due to the definition. Hence, we only need to
show the opposite direction.
We assume that ϕ is a Jacobi cusp form. We write Z0 := (i1n, 0) ∈ Hn ×Mn,r(C).

We remark that there exists a ξ ∈ GJ
n,r such that ξ · Z0 = (τ, z) for a fixed (τ, z) ∈

Hn ×Mn,r(C). With this ξ we have

g(τ, z) =
∣∣Jl,S (ξ, Z0)

−1
∣∣ϕ(ξ · Z0).

For any M ∈ Γn we put gM(τ, z) := g(M · (τ, z)) = g(Mξ · Z0). For any (λ, µ) ∈
Mn,r(Z)×Mn,r(Z), we have

|gM(τ, z + τλ+ µ)| = |g((M [(λ, µ), 0]ξ) · Z0)|
= |g(([(λ′, µ′), κ′]Mξ) · Z0)|(2.1)

= |gM(τ, z)|,

where [(λ′, µ′), κ′] = M [(λ, µ), 0]M−1 ∈ Hn,r(Z). Here we used the condition (ii) in the
definition of Jacobi forms. Let

(ϕ2|2l,2SM)(τ, z) =
∑
N,R

CM(N,R) e

(
1

h
Nτ +Rtz

)
be the Fourier expansion of ϕ2|2l,2SM . Then we have

|gM(τ, z)|2 = |g(M · (τ, z))|2 = |g(Mξ · Z0)|2

= |J2l,2S(Mξ,Z0)
−1ϕ(Mξ · Z0)

2|
= |J2l,2S(M, ξ · Z0)

−1J2l,2S(ξ, Z0)
−1ϕ(Mξ · Z0)

2|
= |J2l,2S(ξ, Z0)

−1(ϕ2|2l,2SM)(τ, z)|

=

∣∣∣∣∣detY le−2π tr(Y −1(2S)[β])
∑
N,R

CM(N,R) e

(
1

h
Nτ +Rtz

)∣∣∣∣∣ .
Thus,

|gM(τ + hB, z)| = |gM(τ, z)|(2.2)

for any B ∈ Symn(Z). For Y = Im(τ) we put

P (Y ) :=

{
Y λ ∈Mn,r(R)

∣∣∣∣λ = (λi,j) ∈Mn,r(R), |λi,j| ≤
1

2

}
.
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For a positive number c, we set

Dc :=

{
(τ, z) ∈ Hn ×Mn,r(C)

∣∣∣∣ |xi,j| ≤ 1

2
h, |αi,j| ≤

1

2
, Y > c1n, β ∈ P (Y )

}
,

where xi,j is the (i, j)-th component of X = Re(τ) and αi,j is the (i, j)-th component of
α = Re(z).
To show that |g(τ, z)| is bounded on Hn ×Mn,r(C), it is enough to show that for any

M ∈ Γn, we have |gM(τ, z)| → 0 for tr(Y ) → +∞ or for |βi,j| → +∞ with a (i, j). Here
βi,j denotes the (i, j)-th component of β. In particular, due to the identities (2.1) and
(2.2), we can take such limit in the domain Dc. We have the fact that if (τ, z) ∈ Dc

and if |βi,j| → +∞ with a (i, j), then tr(Y ) → +∞. Therefore we only need to show
|gM(τ, z)| → 0 for tr(Y ) → +∞.
As for the Fourier expansion of ϕ2|2l,2SM we remark that CM(N,R) = 0 unless 1

h
N −

1
4
R(2S)−1tR > 0. Thus, we assume the condition 1

h
N − 1

4
R(2S)−1tR > 0.

We write T = 2S. We now have

−Y −1T [β]− 1

h
NY − 1

2
Rtβ − 1

2
Y −1βtRY

= −
(
1

h
N − 1

4
RT−1tR

)
Y − Y −1T

[
t

(
β +

1

2
Y RT−1

)]
.

Hence

|gM(τ, z)|2 =

∣∣∣∣∣∑
N,R

CM(N,R) detY le−2π tr{( 1
h
N− 1

4
RT−1tR)Y+Y −1T [t(β+ 1

2
Y RT−1)]}

∣∣∣∣∣ .
If tr(Y ) → +∞, then tr

{(
1
h
N − 1

4
RT−1tR

)
Y
}
→ +∞ and

detY le−2π tr{( 1
h
N− 1

4
RT−1tR)Y+Y −1T [t(β+ 1

2
Y RT−1)]} → 0.

To show that gM(τ, z) converges uniformly on the domain Dc, we write β = Y λ ∈
P (Y ) with λ ∈ Mn,r(R). Remark that the absolute value of any component of λ is less
than or equals to 1

2
. We have(

1

h
N − 1

4
RT−1tR

)
Y + Y −1T

[
t

(
β +

1

2
Y RT−1

)]
=

(
1

h
N − 1

4
T−1

[
tR
]
+ T

[
t

(
λ+

1

2
RT−1

)])
Y

and

|gM(τ, z)|2 =

∣∣∣∣∣∑
N,R

CM(N,R) detY le−2π tr{( 1
h
N− 1

4
T−1[tR]+T [t(λ+ 1

2
RT−1)])Y }

∣∣∣∣∣ .
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In particular, any

1

h
N − 1

4
T−1

[
tR
]
+ T

[
t

(
λ+

1

2
RT−1

)]
is positive definite. Since the set {λ = (λi,j) ∈ Mn,r(R) | |λi,j| ≤ 1

2
} is compact, there

exists a (iY0, iY0λ0) ∈ Hn ×Mn,r(C) and a constant c′ such that

detY le−2π tr{( 1
h
N− 1

4
T−1[tR]+T [t(λ+ 1

2
RT−1)])Y }

≤ c′ detY l
0e

−2π tr{( 1
h
N− 1

4
T−1[tR]+T [t(λ0+

1
2
RT−1)])Y0}

for any (τ, z) ∈ Dc and for any (N,R). Since gM(iY0, iY0λ0) converges absolutely, we
conclude that gM(τ, z) converges uniformaly on the domain Dc,
Thus, if tr(Y ) → +∞, then |gM(τ, z)| → 0. Hence we conclude that |g(τ, z)| is

bounded on Hn ×Mn,r(C). ⊓⊔

3. Plus-space of Jacobi forms

For k, r ∈ N we put

P k
r :=

{
M ∈ L∗

r |M ≡ (−1)k+1LtL mod 4Symn(Z) with some L ∈Mr,1(Z)
}
.

We remark that P k
r depends only on the choice of r and of the parity of k.

We shall define the plus-space of Jacobi forms J
(n)+

k− 1
2
,M
, which is a subspace of J

(n)

k− 1
2
,M
.

Definition 1 (Plus-space of Jacobi forms). Let M ∈ P k
r . Let ϕ ∈ J

(n)

k− 1
2
,M
. We take the

Fourier expansion

ϕ(τ, z) =
∑

M∈L∗
n,S∈Mn,r(Z)

4M−SM−1tS≥0

C(M,S) e
(
Mτ + Stz

)
.

The subspace J
(n)+

k− 1
2
,M

⊂ J
(n)

k− 1
2
,M

consists of all ϕ which satisfies the condition that C(M,S) =

0 unless
(

M 1
2
S

1
2
tS M

)
∈ P k

n+r.

In this article we call J
(n)+

k− 1
2
,M

the plus-space of Jacobi forms of weight k− 1
2
and index

M on Γ
(n)
0 (4).

Remark:

(1) The plus-space of Jacobi forms is defined not for all matrix indices, but for matrix
indices in P k

r . For example, if r = 1, then the index M ∈ N has to satisfy the
condition M ≡ 0, (−1)k+1 mod 4.

(2) If r = 0, we regard J
(n)+

k− 1
2
,M

as the generalized plus-space M+
k− 1

2

(Γ
(n)
0 (4)) which is

introduced in [3].
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(3) If ϕ(τ, z) ∈ J
(n)+

k− 1
2
,M
, then it is not difficult to check that ϕ(τ, 0) belongs to

M+
k− 1

2

(Γ
(n)
0 (4)) as a function of τ ∈ Hn.

In this article we consider the case k ∈ 2Z.
By the Fourier-Jacobi expansion we have the map

M+
k− 1

2

(Γ
(n+r)
0 (4)) →

⊕
M∈Pk

r

J
(n)+

k− 1
2
,M
.(3.1)

On the other hand, by the Fourier-Jacobi expansion we have the map

J
(n+r)
k,1 →

⊕
M∈L∗

r,1

J
(n)
k,M,(3.2)

where we put

L∗
r,1 :=

{
M ∈ L∗

r+1 |M =
(

M1
1
2
L

1
2
tL 1

)
with M1 ∈ L∗

r, L ∈Mr,1(Z)
}
.

Here the Fourier-Jacobi expansion of ϕ(τ, z) ∈ J
(n+r)
k,1 means that if we take the expansion

ϕ(τ, z)e(ω) =
∑

M∈L∗
r,1

ϕM(τ ′, z′)e(Mω′)

for ( τ z
tz ω ) =

(
τ ′ z′
tz′ ω′

)
, τ ∈ Hn+r, ω ∈ H1, z ∈ Mn+r,1(C), τ ′ ∈ Hn, ω

′ ∈ Hr+1 and z′ ∈
Mn,r+1(C), then ϕM ∈ J

(n)
k,M. It means that ϕM is the M-th Fourier-Jacobi coefficient

of ϕ.
If k ∈ 2Z, due to the results given by Eichler-Zagier [1] (for n = 1) and by Ibukiyama [3]

(for n > 1) it is known that M+
k− 1

2

(Γ
(n)
0 (4)) and J

(n)
k,1 are isomorphic as Hecke algebra

modules. Therefore we can expect that J
(n)+

k− 1
2
,M

and J
(n)
k,M are isomorphic. However we do

not know that the maps (3.1), (3.2) of Fourier-Jacobi expansions are surjective, hence

the isomorphism between J
(n)+

k− 1
2
,M

and J
(n)
k,M is not obvious.

4. Isomorphism map

Let M1 ∈ L∗
r be a half-integral symmetric matrix and L ∈Mr,1(Z) be a column vector

such that the matrix

M :=

(
M1

1
2
L

1
2
tL 1

)
∈ L∗

r+1,

is positive-definite. We recall M := 4M1 − LtL ∈ L∗
r. In the following sections we use

these symbols M, M1, L and M. We assume k ∈ 2Z.
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4.1. Definition of the map. Let ψ ∈ J
(n)
k,M. We take the Fourier expansion

ψ(τ, z) =
∑

N∈L∗
n,R∈Mn,r+1(Z)

4N−RM−1tR≥0

A(N,R) e
(
Nτ +Rtz

)
.

For R2 ∈Mn,1(Z) and for (τ, z′) ∈ Hn ×Mn,1(C), we define

ϑ2,R2(τ, z
′) :=

∑
p∈Mn,1(Z)

p≡R2 mod 2Mn,1(Z)

e

(
1

4
tpτp+ tpz′

)
.

For τ ∈ Hn and for z = (z1, z2) ∈Mn,r+1(C) (z1 ∈Mn,r(C), z2 ∈Mn,1(C)), we define

ϑ2,R2,L(τ, z1, z2) := ϑ2,R2

(
τ,

1

2
z1L+ z2

)
.

The following lemma plays an important role in this article.

Lemma 4.1 (Theta decomposition). For τ ∈ Hn, z = (z1, z2) ∈ Mn,r+1(C) (z1 ∈
Mn,r(C), z2 ∈Mn,1(C)), we have

ψ(τ, z) =
∑

R2∈Zn/(2Z)n
fR2(τ, z1)ϑ2,R2,L(τ, z1, z2),

where

fR2(τ, z1) =
∑

N∈L∗
n,R1∈Mn,r(Z)

A(N, (R1, R2))

×e
(
1

4

(
4N −R2

tR2

)
τ +

1

4
(4R1 − 2R2

tL)tz1

)
.

Here in the above summation N and R1 run over all matrices which satisfy

4N −R2
tR2 −M−1[t

(
2R1 −R2

tL
)
] ≥ 0.

Proof. For λ ∈Mn,1(Z) we put(
N ′ 1

2
R′

1
2
tR′ M

)
:=

(
N 1

2
R

1
2
tR M

)[(
1n 0
tλ′ 1r+1

)]
.

Here λ′ =
(
0 λ

)
∈ Mn,r+1(Z) (0 ∈ Mn,r(Z)). Due to the definition of Jacobi forms we

have A(N ′, R′) = A(N,R). We write R = (R1, R2) ∈Mn,r(Z)×Mn,1(Z). Since

A

(
N +

1

2
R2

tλ+
1

2
λtR2 + λtλ,R + λ

(
tL 2

))
= A(N ′, R′) = A(N,R),
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we obtain

ψ(τ, z) =
∑

N∈L∗
n,R∈Mn,r+1(Z)

4N−RM−1tR≥0

A(N,R) e
(
Nτ +Rtz

)
=

∑
R2 mod 2Mn,1(Z)

∑
N∈L∗

n

∑
R1∈Mn,r(Z)

A(N, (R1, R2))

× e

(
1

4

(
4N −R2

tR2

)
τ +

1

4

(
4R1 − 2R2

tL
)
tz1

)
×

∑
λ∈Mn,1(Z)

e

(
1

4
(R2 + 2λ)t (R2 + 2λ) τ + (R2 + 2λ) t

(
1

2
z1L+ z2

))
.

The condition 4N −R2
tR2 −M−1[t(2R1 −R2

tL)] ≥ 0 follows from 4N −RM−1tR ≥ 0

and M−1 =
(
4M−1 0

0 1

) [(
1r − 1

2
L

0 1

)]
. ⊓⊔

We now define the map ιM : J
(n)
k,M → J

(n)+

k− 1
2
,M
. Let ψ ∈ J

(n)
k,M. We use the same symbols

A(N,R) and fR2(τ, z1) which are obtained by ψ as before. We define ϕ = ιM(ψ) by

ϕ(τ, z1) :=
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(4τ, 4z1)(4.1)

for (τ, z1) ∈ Hn ×Mn,r(C). We have the Fourier expansion

ϕ(τ, z1) =
∑

M∈L∗
n,S∈Mn,r(Z)

4M−SM−1tS≥0

C(M,S) e(Mτ + Stz1),

where C(4N − R2
tR2, 4R1 − 2R2

tL) = A(N,R) for N ∈ L∗
n and for R = (R1, R2) ∈

Mn,r+1(Z) (R1 ∈Mn,r(Z), R2 ∈Mn,1(Z)).
In §4.2 we shall show that the above ϕ belongs to J

(n)+

k− 1
2
,M
. In §4.3 we shall show that

the linear map ιM is bijective.

4.2. Half-integral weight. Let ψ ∈ J
(n)
k,M and ϕ = ιM(ψ) be the form constructed by

(4.1) in §4.1. In this subsection we shall show that the form ϕ belongs to J
(n)+

k− 1
2
,M
.

4.2.1. Heisenberg group part.

Lemma 4.2. Let ϕ = ιM(ψ) be as above. For any λ1, µ1 ∈Mn,r(Z) we have

ϕ(τ, z1 + τλ1 + µ1) = e(−λ1Mtλ1τ − 2λ1M
tz1)ϕ(τ, z1).
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Proof. We recall M =
(

M1
1
2
L

1
2
tL 1

)
. For λ1, µ1 ∈Mn,r(Z) and for z = (z1, z2) ∈Mn,r+1(C)

(z1 ∈Mn,r(C), z2 ∈Mn,1(C)), we have

ψ(τ, z + τ(λ1, 0) + (µ1, 0)) = e(−(λ1, 0)Mt(λ1, 0)τ − 2(λ1, 0)Mt(z1, z2))ψ(τ, z)

= e(−λ1M1
tλ1τ − 2λ1M1

tz1 − λ1L
tz2)ψ(τ, z),(4.2)

where (λ1, 0), (µ1, 0) ∈ Mn,r+1(Z) (0 ∈Mn,1(Z)). On the other hand

ψ(τ, z + τ(λ1, 0) + (µ1, 0))

=
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(τ, z1 + τλ1 + µ1)ϑ2,R2,L(τ, z1 + τλ1 + µ1, z2)

=
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(τ, z1 + τλ1 + µ1)ϑ2,R2+λ1L,L(τ, z1, z2)(4.3)

×e
(
1

2
tR2µ1L− 1

4
τ [λ1L]−

1

2
tLtλ1z1L− tLtλ1z2

)
.

Due to (4.2), (4.3) and because of the linear independence of {ϑ2,R2,L}R2 , we obtain

fR2+λ1L(τ, z1)

= fR2(τ, z1 + τλ1 + µ1) e

(
1

4
λ1M

tλ1τ +
1

2
λ1M

tz1 +
1

2
µ1L

tR2

)
.

(4.4)

Hence

ϕ(τ, z1 + τλ1 + µ1) =
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(4τ, 4z1 + 4τλ1 + 4µ1)

=
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2+λ1L(4τ, 4z1)

×e
(
−1

4
λ1M

tλ1(4τ)−
1

2
λ1M(4tz1)−

1

2
(4µ1)L

tR2

)
= e(−λ1Mtλ1τ − 2λ1M

tz1)ϕ(τ, z1).

⊓⊔

4.2.2. Symplectic group part. Let Γ
(n)
0 (4)∗ be the subgroup of G which is denoted in §2.2.

Lemma 4.3. Let ϕ = ιM(ψ) be as before. For anyM ∈ Γ
(n)
0 (4)∗ we have ϕ|k− 1

2
,MM = ϕ.

Proof. Due to the transformation formula of ψ ∈ J
(n)
k,M we have

ψ(−τ−1, τ−1z) = e
(
Mtzτ−1z

)
det(τ)kψ(τ, z).(4.5)
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On the other hand

(4.6)

ψ(−τ−1, τ−1z) =
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(−τ−1, τ−1z1)ϑ2,R2,L(−τ−1, τ−1z1, τ
−1z2)

for z = (z1, z2) ∈Mn,r+1(C) (z1 ∈Mn,r(C), z2 ∈Mn,1(C)). It is known the identity

ϑ2,R2

(
−τ−1, τ−1z

)
= 2−

n
2 det(−iτ)

1
2 e(tzτ−1z)

∑
T2∈Mn,1(Z)/(2Mn,1(Z))

e

(
−1

2
tR2T2

)
ϑ2,T2(τ, z).

(4.7)

Hence from (4.5), (4.6) and (4.7), we have

e
(
Mtzτ−1z

)
det(τ)kψ(τ, z)

= 2−n/2 det(−iτ)1/2e
(

t

(
1

2
z1L+ z2

)
τ−1

(
1

2
z1L+ z2

))
(4.8)

×
∑
T2

{∑
R2

fR2

(
−τ−1, τ−1z1

)
e

(
−1

2
tR2T2

)}
ϑ2,T2,L(τ, z1, z2).

Here R2 and T2 run over a complete set of representatives of Mn,1(Z)/(2Mn,1(Z)). By
comparing the term of ϑ2,0,L in (4.8) we have

e

(
1

4
Mtz1τ

−1z1

)
det(τ)kf0(τ, z1)

= 2−n/2 det(−iτ)1/2
∑
R2

fR2

(
−τ−1, τ−1z1

)
.

(4.9)

Since ψ(τ,−z) = ψ(τ, z), we have A(N,−R) = A(N,R). Hence f0(τ,−z1) = f0(τ, z1).
By replacing (τ, z1) by (−(4τ)−1, τ−1z1) in the identity (4.9), we obtain

ϕ(τ, z1) = 2
n
2 det(−(4τ)−1)k det((4τ)−1i)−

1
2 e(−Mtz1τ

−1z1)f0(−(4τ)−1, τ−1z1)

= 2
n
2 (−1)

nk
2 det((4τ)−1i)k−

1
2 e(−Mtz1τ

−1z1)f0(−(4τ)−1, τ−1z1).(4.10)

We calculate ϕ|k− 1
2
,Mv(4s)

∗ for symmetric matrix s ∈ Symn(Z), where v(4s) :=(
1n 0
4s 1n

)
and v(4s)∗ := (v(4s), θ(v(4s)τ)/θ(τ)).
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We put t(s) :=

(
1n s
0 1n

)
and Jn :=

(
0 −1n
1n 0

)
. Then, v(4s) = Jn t(−4s)J−1

n . By

using the transformation formula of ϑ2,0 in (4.7) we have

θ(Jn t(−4s)J−1
n · τ)

= ϑ2,0(Jn t(−4s)J−1
n · τ, 0)

= 2−
n
2 det

(
−i
(
t(−4s)J−1

n · τ
)) 1

2
∑

T2∈Mn,1(Z)/(2Mn,1(Z))

ϑ2,T2

(
t(−4s)J−1

n · τ, 0
)

= 2−
n
2 det

(
i
(
τ−1 + 4s

)) 1
2

∑
T2∈Mn,1(Z)/(2Mn,1(Z))

ϑ2,T2

(
J−1
n · τ, 0

)
= 2−n det

(
i
(
τ−1 + 4s

)) 1
2 det(−iτ)

1
2

∑
T2,V2∈Mn,1(Z)/(2Mn,1(Z))

e

(
−1

2
tT2V2

)
ϑ2,V2(τ, 0)

= det
(
i
(
τ−1 + 4s

)) 1
2 det(−iτ)

1
2 θ(τ).

Thus, we have

θ(v(4s) · τ)
θ(τ)

= det
(
i
(
τ−1 + 4s

)) 1
2 det (−iτ)

1
2 .

Since v(4s) · (τ, z1) = (τ(4sτ + 1n)
−1, t(4sτ + 1n)

−1
z1), we obtain

(ϕ|k− 1
2
,Mv(4s))(τ, z1)

=

(
θ(v(4s) · τ)

θ(τ)

)−2k+1

e(−Mtz1(4sτ + 1n)
−1(4s)z1)

×ϕ(τ(4sτ + 1n)
−1, t(4sτ + 1n)

−1
z1)

=
(
det
(
i
(
τ−1 + 4s

)) 1
2 det (−iτ)

1
2

)−2k+1

e(−Mtz1(4sτ + 1n)
−1(4s)z1)

×2
n
2 (−1)

nk
2 det((4τ(4sτ + 1n)

−1)−1i)k−
1
2 e(−Mtz1τ

−1t(4sτ + 1n)
−1
z1)

×f0(−(4τ(4sτ + 1n)
−1)−1, (4sτ + 1n)τ

−1t(4sτ + 1n)
−1
z1).

By using the identities τ(4sτ + 1n)
−1 = t(4sτ + 1n)

−1
τ and f0(τ − s, z1) = f0(τ, z1) and

due to the identity (4.10) we have

(ϕ|k− 1
2
,Mv(4s))(τ, z1)

= 2
n
2 (−1)

nk
2 det (−4iτ)−k+ 1

2 e(−Mtz1τ
−1z1)f0(−(4τ)−1, τ−1z1)

= ϕ(τ, z1).

The transformation formulas ϕ|k− 1
2
,M(t(s), 1) = ϕ and ϕ|k− 1

2
,M(d(A), 1) = ϕ are obvious,

where we put d(A) :=

(
A 0

0 tA
−1

)
for A ∈ GLn(Z). It is known that Γ

(n)
0 (4) is generated
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by three types of elements v(4s), t(s) and d(A) (cf. [3, Lemma 2.1]). Therefore Γ
(n)
0 (4)∗ is

generated by three types of elements v(4s)∗, (t(s), 1) and (d(A), 1). Hence ϕ|k− 1
2
,MM = ϕ

for any M ∈ Γ
(n)
0 (4)∗. ⊓⊔

Proposition 4.4. Let k be an even integer and ψ ∈ J
(n)
k,M. Let ϕ = ιM(ψ) be as in §4.1.

Then ϕ belongs to J
(n)+

k− 1
2
,M
. Moreover, if ψ is a Jacobi cusp form, then ϕ is also a Jacobi

cusp form.

Proof. If ψ ∈ J
(n)
k,M, then due to Lemma 4.2 and 4.3, we conclude that ϕ belongs to

J
(n)

k− 1
2
,M
. Because of the construction of ϕ it is not difficult to see that ϕ belongs to the

plus-space of Jacobi forms J
(n)+

k− 1
2
,M
.

We now assume that ψ ∈ J
(n)
k,M is a Jacobi cusp form. We shall show that ϕ = ιM(ψ) ∈

J
(n)+

k− 1
2
,M

is a Jacobi cusp form. We take the theta decomposition

ψ(τ, z) =
∑

R2∈Zn/(2Z)n
fR2(τ, z1)ϑ2,R2,L(τ, z1, z2),

where z = (z1, z2) ∈ Mn,r+1(C) (z1 ∈ Mn,r(C), z2 ∈ Mn,1(C)). Since ψ is a Jacobi form
and due to the transformation formula of ϑ2,R2,L, we have the fact that for any M ∈ Γn,
the form

Jk− 1
2
, 1
4
M(M, (τ, z1))

−1fR2(M · (τ, z1))

is a linear combination of {fT2(τ, z1)}T2 . Here the definition of Jk− 1
2
, 1
4
M(M, (τ, z1)) has

been given in the section 2.1. We write Y = Im(τ) and β1 = Im(z1). Since

fT2(τ, z1 + 2τλ1 + 2µ1) = fT2(τ, z1)e

(
−1

4
M[t(2λ1)]τ −

1

2
M t(2λ1)z1

)
for any λ1, µ1 ∈Mn,r(Z) (cf. the identity (4.4) ), we have

| detY
2k−1

4 e−2π tr( 1
4
Y −1M[tβ1])fT2(τ, z1)| → 0

for tr(Y ) → ∞ (cf. the proof of Lemma 2.1). We take a ξ ∈ GJ
n,r such that ξ ·Z0 = (τ, z1),

where Z0 = (i1n, 0) ∈ Hn ×Mn,r(C). Then
|Jk− 1

2
, 1
4
M(Mξ,Z0)

−1fR2(M · (τ, z1))|

= | detY
2k−1

4 e−2π tr( 1
4
Y −1M[tβ1])Jk− 1

2
, 1
4
M(M, (τ, z1))

−1fR2(M · (τ, z1))| → 0

for tr(Y ) → ∞. Therefore, the form

| detY
2k−1

4 e−2π tr( 1
4
Y −1M[tβ1])fR2(τ, z1)|

is bounded on Hn ×Mn,r(C). Thus,

| detY
2k−1

4 e−2π tr(Y −1M[tβ1])ϕ(τ, z1)|
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is bounded on Hn ×Mn,r(C). Due to Lemma 2.1, we conclude that ϕ is a Jacobi cusp
form. ⊓⊔

4.3. Inverse map. In this subsection we will show that the map ιM : J
(n)
k,M → J

(n)+

k− 1
2
,M

defined in §4.1 is bijective. Let ϕ ∈ J
(n)+

k− 1
2
,M
. We take the Fourier expansion of ϕ:

ϕ(τ, z1) =
∑

M∈L∗
n,S∈Mn,r(Z)

4M−SM−1tS≥0

C(M,S) e(Mτ + Stz1).

If C(M,S) ̸= 0, then there exist N ∈ L∗
n , R1 ∈ Mn,r(Z) and R2 ∈ Mn,1(Z), which

satisfy M = 4N − R2
tR2 and S = 4R1 − 2R2

tL. This R2 is uniquely determined up to
modulo 2Mn,1(Z), because if 4N −R2

tR2 = 4N ′ −R′
2
tR′

2, then R2
tR2 ≡ R′

2
tR′

2 mod 4.
Therefore there exists {fR2}R2 which satisfies

ϕ(τ, z1) =
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(4τ, 4z1),

where

fR2(τ, z1) =
∑
N,R1

C(4N −R2
tR2, 4R1 − 2R2

tL) e

(
1

4

(
4N −R2

tR2

)
τ +

1

4
(4R1 − 2R2

tL)tz1

)
.

Here (N,R1) runs over all elements in L∗
n × Mn,r(Z), such that

 N R1 R2
tR1 M1

1
2
L

tR2
1
2
tL 1

 ∈

L∗
n+r+1

By using these fR2 the inverse image ψ = ι−1
M(ϕ) of ϕ is given by

ψ(τ, (z1, z2)) =
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(τ, z1)ϑ2,R2(τ, (z1, z2)),(4.11)

where τ ∈ Hn, z1 ∈Mn,r(C) and z2 ∈ Mn,1(C).
In this subsection we shall show that this ψ belongs to J

(n)
k,M.

4.3.1. Heisenberg group part.

Lemma 4.5. Let ϕ and ψ be as above in §4.3. For any λ = (λ1, λ2) ∈ Mn,r+1(Z)
(λ1 ∈Mn,r(Z), λ2 ∈Mn,1(Z)) and for any µ = (µ1, µ2) ∈Mn,r+1(Z) (µ1 ∈Mn,r(Z), µ2 ∈
Mn,1(Z)), we have

ψ(τ, z + τλ+ µ) = e
(
−M

(
tλτλ+ 2tλz

))
ψ(τ, z).

Proof. For (τ, z1) ∈ Hn ×Mn,r(C) we have

fR2(τ, z1) = 2−n
∑
s

e

(
1

2
tR2sR2

)
ϕ

(
1

4
τ +

1

2
s,

1

4
z1

)
,(4.12)
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where s runs over all diagonal matrices of size n with entries in {0, 1}.
For (τ, z) ∈ Hn ×Mn,r+1(C) (z = (z1, z2) ∈ Mn,r+1(C), z1 ∈ Mn,r(C), z2 ∈ Mn,1(C)),

due to the definition of ϑ2,R2,L, we obtain

ϑ2,R2,L(τ, z1 + τλ1 + µ1, z2 + τλ2 + µ2)

=
∑

p∈Mn,1(Z)
p≡R2 mod 2Mn,1(Z)

e

(
1

4
τ [p+ λ1L+ 2λ2] +

t(p+ λ1L+ 2λ2)

(
1

2
z1L+ z2

))

×e
(
−1

4
τ [λ1L]− τ [λ2]−

1

2
tλ2τλ1L− 1

2
t(λ1L)τλ2

)
×e
(
−1

2
t(λ1L)z1L− tλ2z1L− t(λ1L)z2 − 2tλ2z2 +

1

2
tpµ1L

)
= e

(
−
(

1
4
LtL 1

2
L

1
2
tL 1

)(
tλτλ+ 2tλz

))
e

(
1

2
tR2µ1L

)
ϑ2,R2+λ1L,L(τ, z1, z2).

On the other hand, by using the transformation formula

ϕ(τ, z1 + τλ1 + µ1) = e(−M(τ [λ1] + 2λ1
tz1))ϕ(τ, z1),

we have

ϕ

(
1

4
τ +

1

2
s,
1

4
(z1 + τλ1 + µ1)

)
= e

(
−M

{(
1

4
τ +

1

2
s

)
[λ1] +

1

2
tλ1(z1 − 2sλ1 + µ1)

})
×ϕ
(
1

4
τ +

1

2
s,
1

4
(z1 − 2sλ1 + µ1)

)
.

We obtain

ϕ

(
1

4
τ +

1

2
s,
1

4
(z1 − 2sλ1 + µ1)

)
=

∑
T2

fT2(τ + 2s, z1 − 2sλ1 + µ1)

=
∑
T2

e

(
−1

2
T2

tT2s

)
e

(
−1

2
T2

tLtµ1

)
fT2(τ, z1).
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Therefore, by using the identity (4.12) we get

fR2(τ, z1 + τλ1 + µ1)

= 2−n
∑
s

e

(
1

2
R2

tR2s

)
ϕ

(
1

4
τ +

1

2
s,

1

4
(z1 + τλ1 + µ1)

)
= 2−n

∑
s

e

(
1

2
R2

tR2s

)
e

(
−M

{(
1

4
τ +

1

2
s

)
[λ1] +

1

2
tλ1(z1 − 2sλ1 + µ1)

})
×
∑
T2

e

(
−1

2
T2

tT2s

)
e

(
−1

2
T2

tLtµ1

)
fT2(τ, z1)

= 2−n
∑
T2

e

(
−1

2
T2

tLtµ1

)
e

(
−M

{
1

4
τ [λ1] +

1

2
tλ1(z1 + µ1)

})
fT2(τ, z1)

×
∑
s

e

(
1

2
R2

tR2s

)
e

(
−1

2
T2

tT2s

)
e

(
1

2
λ1L

tLtλ1s

)
= e

(
−1

2
R2

tLtµ1

)
e

(
−1

4
M
(
τ [λ1] + 2tλ1z1

))
fR2+λ1L(τ, z1).

Thus, we obtain

ψ(τ, z + τλ+ µ)

=
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2(τ, z1 + τλ1 + µ1)ϑ2,R2,L(τ, z1 + τλ1 + µ1, z2 + τλ2 + µ2)

= e
(
−M

(
tλτλ+ 2tλz

))
ψ(τ, z).

⊓⊔

4.3.2. Symplectic group part.

Lemma 4.6. Let ϕ and ψ be as in the beginning of §4.3. Then ψ satisfies

det(Cτ +D)−ke(−Mtz(Cτ +D)−1Cz)ψ(M · (τ, z)) = ψ(τ, z)

for any M = ( A B
C D ) ∈ Γn.

Proof. It is enough to show the transformation formula of ψ for three types of matrices
v(s) =

(
1n 0
s 1n

)
, t(s) =

(
1n s
0 1n

)
and d(A) =

(
A 0
0 tA

−1

)
, where s ∈ Symn(Z) and A ∈

GL(n,Z).
The transformation formula of ψ for t(s) and for d(A) are obvious. Thus, we shall

show the transformation formula of ψ for v(s).
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We recall Jn =
(

0 −1n
1n 0

)
. Since v(s) = Jnt(−s)J−1

n , we have

ϑ2,R2,L(v(s) · (τ, z1, z2))

= ϑ2,R2

(
Jnt(−s)J−1

n ·
(
τ,

1

2
z1L+ z2

))
= 2−

n
2 det

(
i(τ−1 + s)

) 1
2 e((−τ−1 − s)−1[−τ−1(2−1z1L+ z2)])

×
∑
T2

e(−2−1tR2T2)ϑ2,T2(t(−s)J−1
n (τ, 2−1z1L+ z2))

= 2−
n
2 det

(
i(τ−1 + s)

) 1
2 e(((−1n − sτ)−1τ−1)[2−1z1L+ z2])

×
∑
T2

e(−2−1tR2T2) e(−4−1s[T2])ϑ2,T2(−τ−1,−τ−1(2−1z1L+ z2)))

= 2−
n
2 det

(
i(τ−1 + s)

) 1
2 e(((−1n − sτ)−1τ−1)[2−1z1L+ z2])

×
∑
T2

e(−2−1tR2T2) e(−4−1s[T2]) 2
−n

2 det(−iτ)
1
2 e(τ−1[2−1z1L+ z2])

×
∑
V2

e(−2−1tT2V2)ϑ2,V2(τ,−(2−1z1L+ z2)).

Here, in the above summations, T2, and V2 run over a complete set of the representatives
of Mn,1(Z)/(2Mn,1(Z)). Since ϑ2,V2,L(τ,−z1,−z2) = ϑ2,V2,L(τ, z1, z2), we have

ϑ2,R2,L(v(s) · (τ, z1, z2))

= 2−n det
(
i(τ−1 + s)

) 1
2 det(−iτ)

1
2 e(((sτ + 1n)

−1s)[2−1z1L+ z2])

×
∑
T2,V2

e(−2−1tR2T2) e(−4−1s[T2]) e(−2−1tT2V2)ϑ2,V2,L(τ, z1, z2).

On the other hand, from (4.12) we have fV2(τ, z1) = 2−n
∑

s1
e(2−1s1[V2])ϕ

(
1
4
τ + 1

2
s1,

1
4
z1
)
,

where s1 runs over all diagonal matrices of size n with entries in {0, 1}. Similarly to the

case of Siegel modular forms (cf. [3, p.119]), we put γs(s1) :=

(
1n + 2s1s −s1ss1

4s 1n − 2ss1

)
∈

Γ
(n)
0 (4). Then γs(s1) · (14τ +

1
2
s1,

1
4
z1) = (1

4
v(s)τ + 1

2
s1,

1
4
t(sτ + 1n)z1). Due to the trans-

formation formula of ϕ for γs(s1), we have

fV2(τ, z1)

= 2−n
∑
s1

e(2−1s1[V2]) e(−4−1Mtz1
t(sτ + 1n)

−1
sz1)

×

(
θ

(
1

4
v(s)τ +

1

2
s1

)
θ

(
1

4
τ +

1

2
s1

)−1
)−2k+1

ϕ

(
1

4
v(s)τ +

1

2
s1,

1

4
t(sτ + 1n)

−1
z1

)
.
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Since

ϑ2,q(v(s)τ, 0)

= ϑ2,q(Jnt(−s)J−1
n τ, 0)

= 2−
n
2 det(−i(t(−s)J−1

n τ))
1
2

∑
ν∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1tνq)ϑ2,ν(t(−s)J−1
n τ, 0)

= 2−
n
2 det(i(τ−1 + s))

1
2

∑
ν∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1tνq) e(−4−1s[ν])ϑ2,ν(−τ−1, 0)

= 2−n det(i(τ−1 + s))
1
2 det(−iτ)

1
2

∑
ν∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1tνq) e(−4−1s[ν])

×
∑

µ∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1tνµ)ϑ2,µ(τ, 0),

we have

θ

(
1

4
v(s)τ +

1

2
s1

)
=

∑
q∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1s1[q])ϑ2,q(v(s)τ, 0)

= 2−n
∑

q∈Mn,1(Z)/(2Mn,1(Z))

∑
ν∈Mn,1(Z)/(2Mn,1(Z))

∑
µ∈Mn,1(Z)/(2Mn,1(Z))

×e(−2−1s1[q]) e(−2−1tνq) e(−4−1s[ν]) e(−2−1tνµ)

× det(i(τ−1 + s))
1
2 det(−iτ)

1
2ϑ2,µ(τ, 0)

= 2−n
∑

ν∈Mn,1(Z)/(2Mn,1(Z))

∑
µ∈Mn,1(Z)/(2Mn,1(Z))

e(−4−1s[ν]) e(−2−1tνµ)

× det(i(τ−1 + s))
1
2 det(−iτ)

1
2ϑ2,µ(τ, 0)

∑
q∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1(s1[q] +
tνq))

= det(i(τ−1 + s))
1
2 det(−iτ)

1
2 e(−4−1s[s1])

∑
µ∈Mn,1(Z)/(2Mn,1(Z)

e(−2−1ts1µ)ϑ2,µ(τ, 0)

= det(i(τ−1 + s))
1
2 det(−iτ)

1
2 e(−4−1s[s1]) θ

(
1

4
τ +

1

2
s1

)
.

Therefore

fV2(τ, z1)

= 2−n det(sτ + 1n)
−k det(i(τ−1 + s))

1
2 det(−iτ)

1
2 e(−4−1Mtz1

t(sτ + 1n)
−1
sz1)

×
∑
s1

e(2−1s1[V2]) e(−4−1s[s1])
∑

R2∈Mn,1(Z)/(2Mn,1(Z))

fR2

(
v(s)τ + 2s1,

t(sτ + 1n)
−1
z1

)
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= 2−n det(sτ + 1n)
−k det(i(τ−1 + s))

1
2 det(−iτ)

1
2 e(−4−1Mtz1

t(sτ + 1n)
−1
sz1)

×
∑
s1

∑
R2∈Mn,1(Z)/(2Mn,1(Z))

e(2−1s1[V2]) e(−4−1s[s1]) e(−2−1s1[R2])

×fR2

(
v(s)τ, t(sτ + 1n)

−1
z1

)
= 2−n det(sτ + 1n)

−k det(i(τ−1 + s))
1
2 det(−iτ)

1
2 e(−4−1Mtz1

t(sτ + 1n)
−1
sz1)

×
∑

T2,R2∈Mn,1(Z)/(2Mn,1(Z))

e(−2−1tT2V2) e(−4−1s[T2]) e(−2−1tR2T2)fR2(v(s) · (τ, z1)) .

By using the above identities we obtain

ψ(v(s) · (τ, z))
=

∑
R2

fR2(v(s) · (τ, z1))ϑ2,R2,L(v(s) · (τ, z1, z2))

= 2−n det
(
i(τ−1 + s)

) 1
2 det (−iτ)

1
2 e
(
((sτ + 1n)

−1s)
[
2−1z1L+ z2

])
×
∑
V2

∑
R2,T2

e
(
−2−1tR2T2

)
e
(
−4−1s[T2]

)
e
(
−2−1tT2V2

)
fR2(v(s) · (τ, z1))

×ϑ2,V2,L(τ, z1, z2)

= det(sτ + 1n)
ke(4−1M(t(sτ + 1n)

−1s)[z1] + ((sτ + 1n)
−1s)

[
2−1z1L+ z2

]
)

×
∑
V2

fV2(τ, z1)ϑ2,V2,L(τ, z1, z2)

= det(sτ + 1n)
ke(Mtz(sτ + 1n)

−1sz)ψ(τ, z).

Thus, we obtain the transformation formula of ψ for v(s). ⊓⊔

Proposition 4.7. The linear map ιM : J
(n)
k,M → J

(n)+

k− 1
2
,M

is bijective. Moreover, the linear

map ιM induces the bijection between the Jacobi cusp forms of both spaces.

Proof. By the virtue of Proposition 4.4, Lemma 4.5 and Lemma 4.6, the linear map

ιM is bijective. Moreover, it is shown in Proposition 4.4 that if ψ ∈ J
(n)
k,M is a Jacobi

cusp form, then ιM(ψ) ∈ J
(n)+

k− 1
2
,M

is a Jacobi cusp form. It is not difficult to see that if

ϕ ∈ J
(n)+

k− 1
2
,M

is a Jacobi cusp form, then ψ = ι−1
M(ϕ) ∈ J

(n)
k,M is a Jacobi cusp form. (For

the inverse image ψ of ϕ, see (4.11) in §4.3). Thus, we conclude the proposition. ⊓⊔

5. Compatibility of the linear map with the action of Hecke operators

In this section we shall show the compatibility between the map ιM and Hecke oper-
ators acting on both spaces.
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5.1. Hecke operators. Let p be an odd prime. We set

Kα := diag(1α, p1n−α, p
21α, p1n−α).

Let S ∈ L∗
r+1. We shall review the Hecke operators acting on J

(n)
k,S . For 0 ≤ α ≤ n

and for ψ ∈ J
(n)
k,S , we define,

ψ|Tα,n−α(p
2) :=

∑
λ,µ

∑
(A B
C D )

ψ|k,S ( A B
C D ) |k,S[λ, µ],

and where λ and µ run over a complete set of representatives ofMn,r+1(Z)/(pMn,r+1(Z)),
and ( A B

C D ) runs over a complete set of representatives of Γn\ΓnKαΓn, and where we
defined

(ψ|k,S ( A B
C D ))(τ, z) := p−(r+1)k det(Cτ +D)−ke(Stz(Cτ +D)−1Cz)

×ϕ((Aτ +B)(Cτ +D)−1, pt(Cτ +D)−1z).

One can check ψ|Tα,n−α(p
2) ∈ J

(n)
k,S .

We shall review the Hecke operators acting on J
(n)

k− 1
2
,S
. For the definition of Γ

(n)
0 (4)∗ ⊂

G, see §2.2, and for the definition of |k− 1
2
,S, see §2.3. For ϕ ∈ J

(n)

k− 1
2
,S

we define

ϕ|T̃α,n−α(p
2) :=

∑
λ,µ

∑
M∗

ϕ|k− 1
2
,SM

∗|k− 1
2
,S[λ, µ],

where λ and µ run over a complete set of representatives of Mn,r(Z)/(pMn,r(Z)), and
M∗ runs over a complete set of representatives of

Γ
(n)
0 (4)∗\Γ(n)

0 (4)∗
(
Kα, p

α/2
)
Γ
(n)
0 (4)∗.

One can check ϕ|T̃α,n−α(p
2) ∈ J

(n)

k− 1
2
,S

for any α, such that 0 ≤ α ≤ n.

To describe a complete set of representatives of Γ
(n)
0 (4)∗\Γ(n)

0 (4)∗
(
Kα, p

α/2
)
Γ
(n)
0 (4)∗

we prepare the following symbols. We put di,j := diag(1i, p1j, p
21n−i−j) and put

B0 :=

b =
0 0 0
0 a1 pb1
0 tb1 b2

 ∈Mn(Z)

∣∣∣∣∣∣ a1 =
ta1 ∈Mj(p), rankp(a1) = j − n+ α

b1 ∈Mj,n−i−j(p), b2 ∈Mn−i−j(p
2)

 ,

and where Ml,m(p
δ) is a complete set of representatives of Ml,m(Z) modulo pδ, and we

set Ml(p
δ) :=Ml,l(p

δ), and rankp(a1) is the rank of a1 over the finite field Z/pZ.
The symbol U0 denotes a complete set of representatives of

(SL(n,Z) ∩ d−1
i,j SL(n,Z)di,j)\SL(n,Z).
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For b ∈ B0 and for u ∈ U0, we put κ(bu) := ε(a1), where b =

0 0 0
0 a1 pb1
0 tb1 b2

, a1 ∈Mj(p),

and where ε(a1) :=

√(
det a′1

p

)
with a′1 ∈ Mj−n+α(Z) which satisfies a1 ≡ v

(
a′1 0
0 0

)
v−1

mod p with some v ∈ SL(j,Z).
We quote the following lemma from Zhuravlev [5, p.173].

Lemma 5.1. A complete set of representatives of Γ
(n)
0 (4)∗\Γ(n)

0 (4)∗
(
Kα, p

α/2
)
Γ
(n)
0 (4)∗

is given by{((
p2d−1

i,j b
0 di,j

)(
tu

−1
0

0 u

)
, κ(bu)p(n−2i−j)/2

) ∣∣∣∣ i+ j ≤ n, b ∈ B0, u ∈ U0

}
.

Let M :=
(

M1
1
2
L

1
2
tL 1

)
∈ L+

r+1 and M := 4M1 − LtL ∈ L+
r be the same symbols in the

beginning of §4.

Proposition 5.2. Let ψ ∈ J
(n)
k,M and ϕ = ιM(ψ) ∈ J

(n)+

k− 1
2
,M
. For any odd prime p and

for any 0 ≤ α ≤ n, we have

ιM
(
ψ|Tα,n−α(p

2)
)

= p−(r+1)(k−n)+(n−α)/2 ϕ|T̃α,n−α(p
2).

Proof. Similarly to the proof of [3, Theorem 2], we will conclude this proposition by
comparing the Fourier coefficients of ιM (ψ|Tα,n−α(p

2)) and of ϕ|T̃α,n−α(p
2).

We write the Fourier expansions:

ψ(τ, z) =
∑

N∈L∗
n,R∈Mn,2(Z)

4N−RM−1tR≥0

A1(N,R) e(Nτ +RtZ),

(ψ|Tα,n−α(p
2))(τ, z) =

∑
N∈L∗

n,R∈Mn,2(Z)
4N−RM−1tR≥0

A2(N,R) e(Nτ +RtZ),

ϕ(τ, z1) =
∑

M∈L∗
n,S∈Mn,1(Z)

4M−SM−1tS≥0

C1(M,S) e(Mτ + StZ),

ϕ|T̃α,n−α(p
2))(τ, z1) =

∑
M∈L∗

n,S∈Mn,1(Z)
4M−SM−1tS≥0

C2(M,S) e(Mτ + StZ).

Since ϕ = ιM(ψ), we have C1(4N − R2
tR2, 4R1 − 2R2

tL) = A1(N,R) for (N,R) ∈
L∗
n ×Mn,r+1(Z) (R = (R1, R2) ∈Mn,r+1(Z), R1 ∈Mn,r(Z), R2 ∈Mn,1(Z)).
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We now calculate A2(N,R). We have

e(Nτ + tRz)|k,M
(

p2tD
−1

B
0 D

)
|k,M[λ, µ]

= p−(r+1)k detD−ke(N(p2tD−1τ +B)D−1 + ptRtD
−1
z)|k,M[λ, µ]

= p−(r+1)k detD−ke(M(τ [λ] + 2tλz))e(N(p2tD−1τ +B)D−1 + ptRtD
−1
(z + τλ+ µ))

= p−(r+1)k detD−ke(N̂τ + tR̂z +NBD−1 + ptRtD
−1
µ),

where {
N̂ = p2N [tD−1] + 1

2
pλtRtD−1 + 1

2
pD−1Rtλ+M[tλ],

R̂ = pD−1R + 2λM.
(5.1)

If R̂ ∈ Mn,r+1(Z), then pD−1R = R̂ − 2λM ∈ Mn,r+1(Z). Therefore, for (N̂ , R̂) ∈
L∗
n ×Mn,r+1(Z) we have

A2(N̂ , R̂) = p−(r+1)k
∑
D,B

detD−k
∑

λ,µ∈Mn,r+1(Z)

A1(N,R)e(NBD
−1 + ptRtD

−1
µ)

= p−(r+1)(k−n)
∑
D,B

detD−k
∑

λ∈Mn,r+1(Z)

A1(N,R)e(NBD
−1),

where, in the above summations, we take matrices D and B such that
(

p2tD
−1

B
0 D

)
runs

over a complete set of representatives of Γn\ΓnKαΓn, and where{
N = 1

p2
D
((
N̂ − 1

4
R̂M−1tR̂

)
+ 1

4
M−1

[
t
(
R̂− 2λM

)])
tD,

R = 1
p
DR̂− 2

p
DλM.

(5.2)

Here the condition (5.1) is equivalent to (5.2). We write R = (R1, R2), R̂ = (R̂1, R̂2),

λ = (λ1, λ2) ∈ Mn,r+1(Z) (R̂1, λ1 ∈ Mn,r(Z), R1 ∈ Mn,r(Q), R̂2, λ2 ∈ Mn,1(Z), R2 ∈
Mn,1(Q)), and we assume the condition (5.2). If (N,R) ̸∈ L∗

n×Mn,r(Z), then A1(N,R) =
0. Hence, we assume (N,R) ∈ L∗

n ×Mn,r(Z). In particular, we assume R1 ∈ Mn,r(Z)
and R2 ∈Mn,1(Z). By a straightforward calculation we have

4N −R2
tR2 =

1

p2
D(N̂ − 1

4
R̂2

tR̂2)
tD

+
1

p2
D

{
−1

2
λ1

t(4R̂1 − 2R̂2
tL)− 1

2
(4R̂1 − 2R̂2

tL)tλ1 +M[tλ1]

}
tD,

4R1 − 2R2
tL =

1

p
D(4R̂1 − 2R̂2

tL)− 2

p
Dλ1M.

We remark that A1(N,R) depends on the choice of (N̂ , R̂), D and λ1, and A1(N,R) is

independent of the choice of λ2. Since R2 =
1
p
D(R̂2 − λ1L− 2λ2) and R2 ∈Mn,1(Z), we
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have

R̂2 − λ1L− 2λ2 ∈ pD−1Mn,1(Z).(5.3)

Let di,j, B0 and U0 be symbols defined in Lemma 5.1. We put D = di,ju and B = bu

with u ∈ U0 and with b =
( 0 0 0

0 a1 pb1
0 tb1 b2

)
∈ B0. Then the condition (5.3) is equivalent to

u(R̂2 − λ1L− 2λ2) ∈
(
p1i 0
0 1n−i

)
Mn,1(Z).(5.4)

Taking into account the condition (5.4) on λ2 ∈Mn,1(Z) we have∑
λ2

e

(
1

4p2
M−1

[
t(R̂− 2λM)

]
tDB

)
=

∑
λ2

e

(
1

4p2

{(
M1− 1

4
LtL 0

0 1

)−1 [(
1r − 1

2
L

0 1

)
t(R̂− 2λM)

]}
tDB

)
= e

(
1

4p2

{
4M−1

[
tR̂1 −

1

2
LtR̂2

]
+M[tλ1]− 2R̂

(
1r
1
2
tL

)
tλ1 − 2λ1

(
1r

1
2
L
)
tR̂

}
tDB

)
×
∑
λ2

e

(
1

4p2
u(R̂2 − λ1L− 2λ2)

t(R̂2 − λ1L− 2λ2)
tudi,jb

)
= e

(
1

4p2

{
4M−1

[
tR̂1 −

1

2
LtR̂2

]
+M[tλ1]− 2R̂

(
1r
1
2
tL

)
tλ1 − 2λ1

(
1r

1
2
L
)
tR̂

}
tDB

)
×pn−i−j

∑
λ′∈Mn,1(Z)

e

(
1

p
a1[λ

′]

)

= e

(
1

4p2

{
4M−1

[
tR̂1 −

1

2
LtR̂2

]
+M[tλ1]− 2R̂

(
1r
1
2
tL

)
tλ1 − 2λ1

(
1r

1
2
L
)
tR̂

}
tDB

)
×pn−i+(n−j−α)/2ε(a1),

where ε(a1) is the symbol defined before Lemma 5.1. We recall A1(N,R) = C1(4N −
R2

tR2, 4R1 − 2R2
tL). Therefore,

A2(N̂ , R̂)

= p−(r+1)(k−n)
∑
i,j,b,u

detD−k
∑

λ=(λ1,λ2)∈Mn,r+1(Z)

A1(N,R)e(NBD
−1)

= p−(r+1)(k−n)
∑
i,j,b,u

detD−k
∑

λ=(λ1,λ2)∈Mn,r+1(Z)

A1(N,R)

×e
(

1

p2
D

((
N̂ − 1

4
R̂M−1tR̂

)
+

1

4
M−1

[
t
(
R̂− 2λM

)])
tDBD−1

)
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= p−(r+1)(k−n)
∑
i,j,b,u

p−k(2n−2i−j)+n−i+(n−j−α)/2ε(a1)e

(
1

p2

(
N̂ − 1

4
R̂M−1tR̂

)
tDB

)
×e
(

1

p2

{
M−1

[
tR̂1 −

1

2
LtR̂2

]}
tDB

) ∑
λ1∈Mn,r(Z)

C1(4N −R2
tR2, 4R1 − 2R2

tL)

×e
(

1

4p2

{
M[tλ1]− 2R̂

(
1r
1
2
tL

)
tλ1 − 2λ1

(
1r

1
2
L
)
tR̂

}
tDB

)
,

where, in the above summations, i, j run over i+ j ≤ n, j ≥ n−α, and u runs over U0,
and b runs over B0, and where D = di,ju and B = bu, and (N,R) is determined by the
identities (5.2). Remark that if (N,R) ̸∈Mn,r+1(Z), then C1(4N−R2

tR2, 4R1−2R2
tL) =

A1(N,R) = 0.
Thus, we conclude

A2(N̂ , R̂) = p−(r+1)(k−n)
∑
i,j,b,u

p−k(2n−2i−j)+n−i+(n−j−α)/2ε(a1)e

(
1

p2

(
N̂ − 1

4
R̂1

tR̂1

)
tDB

)
×

∑
λ1∈Mn,r(Z)

C1(4N −R2
tR2, 4R1 − 2R2

tL)

×e
(

1

4p2

{
M[tλ1]− 2R̂

(
1r
1
2
tL

)
tλ1 − 2λ1

(
1r

1
2
L
)
tR̂

}
tDB

)
,

where the summations are the same as the above.
We now calculate C2(4N̂−R̂2

tR̂2, 4R̂1−2R̂2
tL) and will show that C2(4N̂−R̂2

tR̂2, 4R̂1−
2R̂2

tL) coincides with A2(N̂ , R̂) up to constant as functions of (N̂ , R̂).

For M ∈ L∗
n, S ∈ Mn,r(Z),

((
p2tD

−1
B

0 D

)
, κ(B) detD

1
2

)
∈ Γ

(n)
0 (4)∗

(
Kα, p

α/2
)
Γ
(n)
0 (4)∗,

we have

e(Mτ + Stz1)|k− 1
2
,M

((
p2tD

−1
B

0 D

)
, κ(B) detD

1
2

)
|k− 1

2
,M[λ1, µ1]

= κ(B)−2k+1 det(D)−k+ 1
2 e(M(p2tD−1τ +B)D−1 + pStz1D

−1)|k− 1
2
,M[λ1, µ1]

= κ(B) det(D)−k+ 1
2 e(M

(
τ [λ1] + 2λ1

tz
)
)

×e(M(p2tD−1τ +B)D−1 + pSt(z1 + τλ1 + µ1)D
−1)

= κ(B) det(D)−k+ 1
2 e(M̂τ + Ŝtz +MBD−1 + pStµ1D

−1),

where we put {
M̂ = p2M [tD

−1
] +M[tλ1] + pD−1Stλ1,

Ŝ = 2λ1M+ pD−1S,
(5.5)
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and where κ(B) is the symbol defined before Lemma 5.1. We assume (M̂, Ŝ) ∈ L∗
n ×

Mn,r(Z). Then, we have pD−1S = Ŝ − 2λ1M ∈Mn,r(Z). Since

MBD−1 =
1

p2
D

{
M̂ − 1

2
λ1

tŜ − 1

2
Ŝtλ1 +M[tλ1]

}
tDBD−1,

and due to Lemma 5.1, we have

C2(M̂, Ŝ) =
∑
D,B

κ(B) det(D)−k+ 1
2

∑
λ1∈Mn,r(Z)

C1(M,S) e(MBD−1)

=
∑
D,B

κ(B) det(D)−k+ 1
2

∑
λ1∈Mn,r(Z)

C1(M,S)

×e
(

1

p2

{
M̂ − 1

2
λ1

tŜ − 1

2
Ŝtλ1 +M[tλ1]

}
tDB

)
,

where D and B runs over matrices such that

{(D,B) | i+ j ≤ n, j ≥ n− α,D = di,ju,B = bu, b ∈ B0, u ∈ U0} ,

and where (M,S) ∈ L∗
n×Mn,r(Z) is determined by (M̂, Ŝ), D and λ1 through the identity

(5.5). We choose a (N̂ , R̂) ∈ L∗
n×Mn,r+1(Z) (R̂ = (R̂1, R̂2), R̂1 ∈Mn,r(Z), R̂2 ∈Mn,1(Z))

which satisfies M̂ = 4N̂ − R̂2
tR̂2 and Ŝ = 4R̂1 − 2R̂2

tL. Then (M,S) in the above
summations is

M =
1

p2
D

{
M̂ − 1

2
λ1

tŜ − 1

2
Ŝtλ1 +M[tλ1]

}
tD = 4N −R2

tR2,

S =
1

p
D
(
Ŝ − 2λ1M

)
= 4R1 − 2R2

tL,

where (N,R) ∈ L∗
n × Mn,r+1(Z) is determined by (N̂ , R̂) through the identity (5.2).

Therefore

C2(4N̂ − R̂2
tR̂2, 4R̂1 − 2R̂2

tL)

=
∑
D,B

κ(B) det(D)−k+ 1
2

∑
λ1∈Mn,r(Z)

C1(4N −R2
tR2, 4R̂1 − 2R̂2

tL)

×e
(

1

p2

{
4N̂ − R̂2

tR̂2 − λ1
t
(
2R̂1 − R̂2

tL
)
−
(
2R̂1 − R̂2

tL
)

tλ1 +M[tλ1]
}

tDB

)
=

∑
i,j,b,u

ε(a1)p
(−k+ 1

2
)(2n−2i−j)

∑
λ1∈Mn,r(Z)

C1(4N −R2
tR2, 4R̂1 − 2R̂2

tL)

×e
(

1

p2

{
4N̂ − R̂2

tR̂2 − λ1
t
(
2R̂1 − R̂2

tL
)
−
(
2R̂1 − R̂2

tL
)

tλ1 +M[tλ1]
}

tDB

)
= p(r+1)(k−n)−(n−α)/2A2(N̂ , R̂),
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where, in the above summation, i, j run over i+ j ≤ n, j ≥ n− α, and u runs over U0,
and b runs over B0, We conclude

ϕ|T̃α,n−α(p
2) = p(r+1)(k−n)−(n−α)/2 ιM

(
ψ|Tα,n−α(p

2)
)
.

⊓⊔
Theorem 1.1 follows from Proposition 4.7 and Proposition 5.2.
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