ON GENERALIZED MAASS RELATIONS AND THEIR
APPLICATION TO MIYAWAKI-IKEDA LIFTS

SHUICHI HAYASHIDA

ABSTRACT. Some generalizations of the Maass relation for Siegel modular forms of
higher degrees have been obtained by several authors. In the present article we first
give a new generalization of the Maass relation for Siegel-Eisenstein series of arbitrary
degrees. Furthermore, we show that the Duke-Imamoglu-Ibukiyama-Ikeda lifts satisfy
this generalized Maass relation with some modifications. As an application of the
generalized Maass relation, we give a new computation of the standard L-function of
the Miyawaki-Ikeda lift of two elliptic modular forms.

1. INTRODUCTION

1.1. The Maass relation is a relation among Fourier coefficients of Siegel-Eisenstein
series of degree two, and the Maass relation characterizes the Saito-Kurokawa lifts (cf.
[E-Z 85].) In his article [Ya 86] Yamazaki has obtained a generalization of the Maass re-
lation for Siegel-Eisenstein series of arbitrary degrees. Furthermore, in [Ya 89] Yamazaki
obtained a relation among Jacobi-Eisenstein series of arbitrary degrees. Here the Jacobi-
Eisenstein series is a Jacobi form which is constructed like the Siegel-Eisenstein series.
This relation among Jacobi-Eisenstein series is necessary to obtain a new generalization
of the Maass relation, which is different from the generalized Maass relation in [Ya 86].
However, the relation among Jacobi-Eisenstein series in [Ya 89] is not enough to obtain
a new generalization of the Maass relation, because in [Ya 89| the Jacobi-Eisenstein se-
ries of index 1 is treated and we need the relation among the Jacobi-Eisenstein series
of arbitrary inder. One of the aim of the present article is to generalize the relation
among Jacobi-Eisenstein series obtained in [Ya 89 for arbitrary index and to give a new
generalization of the Maass relation for Siegel-Eisenstein series of general degrees.

On the other hand, a generalization of the Saito-Kurokawa lift for Siegel modular
forms of even degrees was conjectured by Duke and Imamoglu, and by Ibukiyama, in-
dependently, and the conjecture was solved by Ikeda [Ik 01]. In the present article, we
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call these lifts the Duke-Imamoglu-Ibukiyama-lkeda lifts. It is known that the Duke-
Imamoglu-Ibukiyama-Ikeda lifts satisfy the generalized Maass relations in [Ya 86| by in-
serting the Satake parameters of the preimage of the Duke-Imamoglu-Ibukiyama-Tkeda
lift into the relation (cf. [Ha 11].)

By applying the Duke-Imamoglu-Ibukiyama-Ikeda lift, Ikeda [Tk 06] solved and gener-
alized one of the two conjectures posed by Miyawaki [Mi 92] under a certain assumption.
Namely, he obtained lifts from pairs of an elliptic modular form and a Siegel modular
form of degree r to Siegel modular forms of degree 2n + r under the assumption that
the constructed Siegel modular form does not vanish identically. In the present article
we call these lifts the Miyawaki-Ikeda lifts. In [Ik 06] Ikeda obtained a conjecture about
the relation between the Petersson norm of the Miyawaki-Ikeda lift and a special value
of a certain L-function. For more details about the conjecture of non-vanishing of the
Miyawaki-Tkeda lift, we refer the reader to [Ik 06].

The purpose of the present article is as follows:

(1) we generalize the relation among Jacobi-Eisenstein series given in [Ya 89| for
arbitrary integer-indices and obtain a new generalization of the Maass relation
for the Siegel-Eisenstein series of arbitrary degrees (Theorem |[1.1)),

(2) we show a new generalization of the Maass relation for the Duke-Imamoglu-
Ibukiyama-Ikeda lifts (Theorem [1.2)),

(3) By using the generalized Maass relation we obtain a new proof of the explicit
expression of the standard L-functions of the Miyawaki-Ikeda lift of two elliptic
modular forms (Corollary [1.4).

As for generalization of the Maass relation, Kohnen [Ko 02] obtained another kind of
generalization of the Maass relation which is related to the Fourier-Jacobi coefficients of
matrix index of size 2n — 1, while the generalization of the Maass relation in the present
article is related to the Fourier-Jacobi coefficients of integer indez. It is known that the
generalized Maass relation in [Ko 02] characterizes the image of the Duke-Imamoglu-
Ibukiyama-lIkeda lifts (cf. Kohnen-Kojima [KK 05, Yamana [Ya 10].)

We remark that a certain identity of the spinor L-function of the Miyawaki-Tkeda lift
of two elliptic modular forms has been given by Heim [He 12| for the case of degree three
and weight twelve. This identity has been generalized in |[Ha 13] for any odd degrees
2n — 1 and for any even weights k.

1.2. We explain our results more precisely. We denote by $),, the Siegel upper-half
space of size n. For integers n and k > n + 2, the Siegel-Eisenstein series of weight k£ of
degree n + 1 is defined by

E"Y(z) = > det(CZ + D)7*,

M:(é g )an+1,o\Fn+1
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where 7 € $,,41, where I',, 11 := Sp,,,,(Z) is the symplectic group of size 2n + 2 with

entries in Z, and we set I', 119 = {(é g) el |C= 0}. The Fourier-Jacobi
+1)

expansion of E,E," is given by

E(n—i-l) (( s j})) — Z 6](:771(7—7 Z)627rimw’

m=0

(n)

ke is called the m-th Fourier-Jacobi

where 7 € §,,, w € H; and z € C". The form e
coefficient of E,gnﬂ). We remark that e,(:?)n is a Jacobi form of weight k£ of index m of
degree n (cf. Ziegler [Z1.89].)

We denote by Jk " the space of Jacobi forms of weight k of index m of degree n.

For the definition of Jacobi forms of higher degree, we refer the reader to [Zi89] or
Section [2.2] in the present article. We define two kinds of index-shift maps:

Vit (p?) = I — J

kmpz’

U(p) : J( g

kmp

Here the index-shift map V;,,_;(p?) (0 <1 < n) is given by the action of the double coset
I, diag(1;, pl,_1,p?1;, pl,)T,. For the precise deﬁnition of Vin_1(p?) see Section ,

and we define (¢p|U(d))(T, 2) := ¢(7,dz) for ¢ € J and for any natural number d.

Theorem 1.1. Let e,(jzl be the m-th Fourier-Jacobi coefficient of Siegel-Eisenstein series.
Then we obtain the relation

ekmi (Vbn( )7 ) VmO(pz))

0 1
n — — k
= (ABIUG) AU ) e ) (P75 Lt o) | AB,
P 0 p72k+2

where the both sides of the above identity are vectors of functions and A ont1 1S @ certain
matriz with size 2 times (n + 1) which depends only on p and k, and where we regard

e,(:i% as identically 0 if p* fm. Here by, is defined by 1 or 0, according as plm or p fm.

For the precise definition of Ag;,ﬁH, see Section .

The relation in Theoren[I.1] is a new generalization of the Maass relation for Siegel-
Eisenstein series of arbitrary degrees. As for the function e,(cigl]\/n(p), a similar identity
has already been given in [Ya 86]. Here the operator V,,(p) is obtained from the double
coset I'pdiag(1,,pl,) .

Now we apply the relation in Theorem to the Duke-Imamoglu-Ibukiyama-ITkeda
lifts. We denote by Si(I",) the space of Siegel cusp forms of weight k of degree n. Let
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f € So(I'1) be a normalized Hecke eigenform and let F' € Sy.,(I'2,) be the Duke-
Imamoglu-Ibukiyama-lkeda lift of f (cf. Ikeda [k 06].) We remark that there is no
canonical choice of F', however F' is determined up to constant multiple. We consider
the Fourier-Jacobi expansion of F":

)a ((tz, j)) _ Z¢m(7_7 2)627rimw7
m=1

where 7 € §),,, w € $; and z € C". Then ¢,, is the m-th Fourier-Jacobi coefficient of F’
and is a Jacobi cusp form of weight k£ 4+ n of index m of degree 2n — 1. We denote by

J, ,g;lcus]? the space of Jacobi cusp forms of weight k of index m of degree n. The restriction
of the maps V;,,_;(p?) and U(p) to J,ETQLC"SP gives maps from J,S;)lww to Jli"%;?p . Let o5
be the complex numbers which satisfy

W = alp),

where a(p) is the p-th Fourier coefficient of f.
The following theorem is a generalization of the Maass relation for the Duke-Imamoglu-
Ibukiyama-lIkeda lifts, which is different from the ones in [Ko 02] and in [Ha 11].

(o + oz;I

Theorem 1.2. Let ¢, € J,Ezn_l)cusl) be the m-th Fourier-Jacobi coefficient of the Duke-

+n,m

Imamoglu-Ibukiyama-Ikeda lift F' as the above. Then we have
P (‘/0,2n71<p2)7 e ‘/2n71,0<p2))

p~ (= D(2k-1) (925;2

0 1
VW), 0ulU®), 6me ) | 2757 2757 (=1 4 p3y) | Abaa(ay),
0 p—2k—2n+2
where Ay o, (ayp) is a certain matriz with size 2 times 2n which depends only on f and p.
We regard the form ¢p% as identically zero if p* fm. The matriz Ay 5, () is obtained by

substituting X, = «y, into a matriz Ay, (X,). For the precise definition of Aj,,(X,),
see Section [2.0.

Now we apply the relation in Theorem to the Miyawaki-Ikeda lifts of two elliptic
modular forms. Let f and F be as above. Let g € Ski,(I'1) be a normalized Hecke
cigenform. Then one can construct a Siegel cusp form Fy, of weight k + n of degree

2n — 1:
Ftr) = [ p((f ) s

The form Fy 4 is the Miyawaki-Tkeda lift of ¢ associated to f. It is shown by Ikeda [Tk 06]
that if 7}, is not identically zero, then F 4 is an eigenfunction for Hecke operators for the
Hecke pair (I'y,—1, Spy,,_1 (Q)). Furthermore, the standard L-function of F , is expressed
as a certain product of L-functions related to f and g. Now by virtue of Theorem [1.2]
we obtain a new proof of these facts by using the generalized Maass relations.
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Theorem 1.3. Let Fy, € Skin(Tan—1) be the Miyawaki-Ikeda lift of g associated to f.
Then

‘F}ﬂy(TBanl(p2%'ﬂajgnflﬂ(p2>)
= R I () A (o) Fo

where T} 2,—1-1(p?) are Hecke operators (see Section[2.4]) and A2 on Q) 1S the same matriz
in Theorem- Here \j(p?) is the eigenvalue of g for T1o(p?).

We denote by B;ﬂ the complex numbers which satisfy:

k+n 1

(6}) + ﬁ ) = b(p),
where b(p) is the p-th Fourier coefficient of g. The adjoint L-function of g is defined by

L(s,g,Ad) := H{1— Y1 = B2p)(1 - 82 p))

Corollary 1.4. If F; 4 is not identically zero, then the Satake parameter of Fy 4 at prime
D 1S
—n n—3
{pits 1} = { 2 oy aFp TR Lol 2}-
Furthermore, the standard L-function of Fy4 is
2n—2
L(s,Frgst) = L(s,g, Ad) [[ Ls +k+n—1—1i,f),
i=1
where L(s, f) is the Hecke L-function of f. (see Section for the definition of the
standard L-function.)

We remark that Corollary|1.4/has already been shown by Ikeda [Ik 01] for more general
case, namely for Siegel modular form g € Sy, (I;). The method in [Ik 01] is based on
the theory of automorphic representations. On the other hand, if a Siegel modular
form is an eigenform for Hecke operators, the eigenvalues are calculated from the Satake
parameters by using the explicit map of the Satake isomorphism. This explicit map
is given in [Kr 86]. Hence Theorem and Corollary are equivalent. Therefore
Theorem essentially follows from [Ik 01, Proposition 3.1] as a special case of r = 1.
However, in the present article we obtained a new proof of Theorem and Corollary[T.4]
by using the generalized Maass relation.

Furthermore, we remark that a certain identity of the spinor L-function of F;, has
been obtained in [Ha 13] which is a generalization of the case (n, k) = (2,12) in [He 12].

This paper is organized as follows: In Section [2| we give a notation and review some
operators for Jacobi forms, and in Section [3| we shall show a certain relation among
Jacobi-Eisenstein series with respect to the index-shift maps. In Section [4] we shall
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prove Theorem [I.I] while we shall prove Theorem [I.2] Theorem and Corollary
in Section
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valuable comments and suggestions for improving this manuscript. This work was sup-

ported by JSPS KAKENHI Grant Number 23740018.

2. OPERATORS ON JACOBI FORMS

2.1. Symbols. We denote by M; ;(R) the set of all ¢ by j matrices with entries in the ring
R and put M, (R) := M, ,(R). For any square matrix A € M, (Z) we denote by rank,(A)
the rank of A in M, (Z/pZ). For any two matrices A € M,(Z) and B € M, ,,(Z) we
write A[B] for ' BAB. The set of all half-integral symmetric matrices of size n is denoted
by Sym..

0 -1,
We put J,, := (1n 0 ) and set
GSp, (R) = {M € Mo, (R)[MJ,'M = v(g)Jn, v(g) > 0},

where the number v(g) is called the similitude of g.

We put T, := Sp,,(Z) C SLy,(Z). For any square matrix = we set e(z) := e2™#@)
where tr(z) denotes the trace of . For any natural number m we put < m >:= m(mTH)

The symbol $),, denotes the Siegel upper-half space of size n. The action of GSp.’(R)
on 9, is given by g-7 := (A7+ B)(C7+ D) for g = (4 B) € GSp;/ (R) and for 7 € H,,.

The symbol Hol($),, — C) (resp. Hol($),, x C" — (C)) denotes the space of all holo-
morphic function on $),, (resp. 9, x C".) For any integer k, we define the slash operator
[k :

(Flrg)(r) := det(CT + D)™ F(g - 7),

where F' € Hol($),, — C), g (é 5) € GSp,(R) and T € $,. By this definition the
group GSp;' (R) acts on Hol($),, — C).

2.2. Jacobi group. We define a subgroup of GSp;; (R):

J A 0 B =x A B
Gy, = {’ye GSle(R) ‘fy— ( V);I)’ (C D) GGSpZ(R)}.
01

0
0 0

A

A bijective map from GSp;'(R) x (R™ x R") x R to G is given by

A B) 4 08B0 1n0t0t
7(A7ﬂ)7/€:| — (O v(g) 0 0 >\1 m A;H—n ,
KC D 5069 0
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A B
C D
(R" x R") x R and G?. By this bijection the group G can be regarded as a semi-direct
product of GSpf(R) and ((R™ x R") x R), namely G = GSp/(R) x ((R" x R") x R).

Let k and m be integers and let ¢ € Hol($),, x C* — C) be a holomorphic function on
), x C". We define the slash operator | ,:

(@lkm)(7,2) = ((¢(7, 2)e(mw))|ky) e(=v(y) mw),

where g = > € GSp/(R), \,u € R" and k € R. We identify GSp;(R) x

where th 5) € Nnt1, TE Ny, weE N, 2€Cand vy € Gi. We remark that the RHS

of the above definition does not depend on the choice of w. By this definition, the group
G acts on Hol($),, x C* — C).
For v = [g, (\, u), k] € G we have
(Plem)(,2) = det(CT+ D) " e(—v(g)m ((CT+ D)'C)[z 4+ 7A + )
xe(v(g) m ("IATA +2°Az + 2\ u + k)
xp(g - 7,v(9)"(CT + D)™z + TA+ 1)),

A B
where g = (C’ D) € GSp, (R).
We put a discrete subgroup 'Y of G:
7 o= {[M,(\p),kl €G)IMET,, (\p) €L"XZ", k€ L}.

We denote by J,ﬁ”,},b the space of Jacobi forms of weight k of index m of degree n (cf.
Ziegler [Zi 89].) For n > 1 the space J,E"T)n is defined by

J = {¢ € Hol($H, x C" = C)| $lamy = ¢ for any v € T} }.

2.3. The standard L-functions. Let F' € Si(I',) be a Siegel cusp form which is an
eigenform for all Hecke operators. Let {0, 41,5, ---, fnp} be the Satake parameter of F
at a prime p. The standard L-function of F'is defined by

L(s, Fyst) == ] {(1 —p ) [ = pipp)(1 - u@,}ps)} :

P =1

In our setting we have p2 plp Hngp = prh<n>,

2.4. Index-shift maps of Jacobi forms. For any function ¢ € Jlgn% and for any matrix
g € GSp, (R) N My,(Z) we define

¢|V(anrn) = Z¢|k7m[gi7(070>70]7
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where I',,gI",, = U [',.9; is a coset decomposition. It is known that ¢|V (I',gT',,) is well-

defined and belongs to J,E?V)(g)m.
For any integer [ (0 <1 < n), we define

O\Vina(p?) = oV (Todiag(ly, ply_i, p*1, plai)Th).

For any non-negative integer d we define
(@IU(d))(7,2) = o(r,dz).
Then ¢|Vi,—i(p?) € Jo

v 2 and ¢|U(d) € I .
Let F' be a Siegel modular form of weight k of degree n. Let g be an element of
GSp," (R)N My, (Z). For any double coset I',gI",,, the Hecke operator T'(T',,gI',,) is defined
by

FIT(Thgly) = v(g)™ =" Fligi,

where I',g1",, = Uani is a coset decomposition. For any integer [ (0 < [ < n), we

7

define
F|ﬂ,n—l(p2) = F|T(Pndiag(1l7p]-n—l7p21l7p]-n—l)rn)-
For any Jacobi form ¢ € Jé%» we define the function

W(g)(1) = ¢(7,0)

for 7 € 9,,. From the definition of Jacobi form, it follows that W{(¢) is a Siegel modular
form of weight k of degree n.
Furthermore, due to a straightforward calculation, we obtain

(2.1) WOIT(Togls) = v(g)"* =" W(|V(Lugln))
for any Jacobi form ¢ € J,E,n% and for any g € GSp,' (R) N Ma,(Z).

2.5. Siegel ®-operator for Jacobi forms. Let ¢ € Hol($),, x C" — C) be a holomor-
phic function. We define the Siegel ®-operator:

®(9) (r1,21) := lim ¢ ((G 2) ’ (23)) ’

where 7, € $,,_1 and 2, € C* 1.
It is known that if ¢ € J,gn% is a Jacobi form, then the function ®(¢) is also a Jacobi

form which belongs to J,inn; b,
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2.6. The Satake isomorphism and the Siegel ®-operator. Let H; be the local
Hecke ring with respect to the Hecke pair (I',,, GSp;' (R) N Ma,(Z[p~'])). We denote by
CIX{?, ..., XF W the subring of the polynomial ring C[XF!, ..., X '] which is invariant
under the action of the Weyl group W,, associated to the symplectic group. The Satake
isomorphism ,, : H} — CIXF!, ..., XF W= is given by

ltD BZ X. L,
U (5 ) w3

pli,1 * *
where v(g) = p' and D; = .. % | (cf. Andrianov [An 79]).
l.
p i,m
We write ¢ = ¢, for simplicity. In this article we consider the subring of H; which is
generated by Ty, (p?)* and T}, (p?) (I=1,...,n).
The following proposition follows from [Kr 86, Satz].

Proposition 2.1. If n > 2 we have

(o) = X {(X,'+(p—Dp™" +X5) o(Tho10(p%))
+ (0 = Dp (T 21 (0%) }
o(Tina(p?) = Xo{p'" " o(T1n-2(p?)
+ (X, (0= Dp "+ X)) e(Ton-1(p)) }
o(Ton(P?) = Xn{p " o(Tona(p®)},

and for 1 < j <n we have
P(Tin(0°) = Xo AP "0(Tjn—j1(p?))
+(Xr:1+pj_n_l(p 1) ) ( Jj—1ln— ](p2))
+ (P =T (T (07)

Proof. We obtain this proposition by replacing p~" in [Kr 86, Satz] by p~"X,,. For the
detail the reader is referred to [Kr 86, Satz]. O

Now for integers | (2 <1),t (0 <t <1),j (0<j <), we put

(p2lf2j+2 _ 1)pj717le if t = ] . 2,
L+p " p-1D)X + X ift=5-1,
b j = by j1p(Xp) = :

0 otherwise,
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and we put a matrix
boo - bo
Bl (X)) = (bt,j)t;O ..... -1 = : :
bl—l,O e bl—l,l

with entries in C[X], Xl_l]. From Proposition and from the definition of Bj ;41 (X)),
we have the identity:

(e(Tou () s p(Tio(0)) = (p(Tog=1(p*)), - 0(Ti—10(p%))) Bris1 (X1)-

For Jacobi forms we obtain the following lemma.

Lemma 2.2. Let ¢ € Jk(:lzn be a Jacobi form such that ®(¢) is not identically zero. Then
we have

(] (Vou(p?), - Vio@*)) = (2(O)(Vor-1(p). -, Viero(0?))) Buann (0'"),
- Vio (%)) = (0[Vou(p?), . 8l Vio (p%)).

Proof. Let v = {(61 g) ,(0,0),0} € Gf with A = <JAC1l 2), B = (i bb1>, D =

(D D), where A*, D* € GL;_1(R) and B* € M;_1(R). Then

where we put ¢|(Vo,(p?)

0 d
®(¢|k,m7) = d_k®(¢)|k,m7*7
A* B*
0 D ,(0,0),O} e Gy ,.
The rest of the proof of this lemma is the same to the case of Siegel modular forms
(cf. [Kx_86, Satz].) Thus we conclude this lemma. O

where v* =

We define a matrix
BQ,n+1(X27X37'“aXn) = HBl,l+1(Xl)7
1=2

which entries are in C[X5", ..., X]. Then we have

((To.u(P*)); s 2(Tno(@))) = (2(To1 (1)), P(T10(0*))) Bain1 (Xa, ..., Xn).

The precise expression of p(T},,_;(p*)) by using the elementary symmetric polynomials
has been given in [Kr 86, Korollar 2].

To explain our results we define two matrices Af;;f; 41 and Ay, (X)), First we define a
2 x (n + 1) matrix

Dk I 2—k ,3—k n—k
A27n+1 T B2,n+1(p P 7o P )

We remark that the matrix Ag:ﬁ +1 depends only on the prime p and the integer k& > 0.
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We set a 2 X 2n matrix
2n—1

—1
Bé,2n<X2’ ...,X2n 1 = <H X) BQ 2n XQ, ...,Xgnfl).

From the definition of By, (Xo, ..., X2,-1) it is not difficult to see that the entries in
the matrix Bj,, (Xa, ..., X2,-1) belong to C[X, + X5t Xono1 + X511, We define a
2 X 2n matrix

3_n 5_n _3.4n
Al2 Qn( ) = Bé,Qn(pz Xp7p2 Xpa - P 2t Xp)
In Section 5.3 . we will show A, (X,) = A5 ,, (X, ).

3. JACOBI-EISENSTEIN SERIES

The goal of this section is to show a certain relation among Jacobi-Eisenstein series

with respect to the index-shift maps V;,_;(p*) (I = 0,...,n). In Section {4 we shall

translate such relation to the relation among Fourier-Jacobi coefficients egfm

prove Theorem [I.1]

and will

3.1. Definition of Jacobi-Eisenstein series. For integers k, m and n, we define the
Jacobi-Eisenstein series of weight k of index m of degree n by

B (rz) = > (em?),

V€T, o\T',
where we put
1n
0
0
0

AOQ0B
Iy = {(g})g (gl g)ern,uezn,mez}.
000

It is known that if & > n+2, then E ") .. converges and belongs to Jk (cf. Ziegler [Zi 89].)
The purpose of this section is to show that E n) 2V Vin—1(p?) is a linear combination of

three forms E ]U( 2), E(n - |U(p) and E,(:T)npz

Lemma 3.1. Let m and n be positive integers. Then the forms {E,(gn)%|U(d)} are
'y d

linearly independent, where d runs over all positive integers such that d?|m.

Proof. Let ® be the Siegel ®-operator for Jacobi forms introduced in Section 2.5 It
follows from the definition that @(E,(C"T)n) = E,E:"W_L Y. Hence it is enough to show that the

forms {El(cli% U (d)}d are linearly independent.

Let E,glgn(r, z) = Y .c(n;r)e(n'T + 12) be the Fourier expansion of E,(:,)n We call
c(n’,r) the (n',r)-th Fourier coefficient of E,(glgn Let n’ > 0 and r > 0 be integers such
that 4n’m — r? > 0. Then it is known that the (n’,r)-th Fourier coefficient of E,Elgl is
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not zero (cf. Eichler-Zagier [E-Z 85| p.17-p.20].) On the other hand, for any d > 1 such
that d?|m, the (n’,r)-th Fourier coefficient of E,il)ﬂ|U (d) is zero unless d|r. Therefore
142

we obtain this lemma. O

3.2. Definition of a form KZ-(Z). We quote some symbols from [Ya 89]. For a fixed
prime p and for 0 < i < j < n, we put

8ij = diag(1;,pl;_s, p* 1, ;)
and
0; = 0;, = diag(1;, pl,—;).
And for « = diag(0;, x22,0,—;) With @29 = 'x95 € M;_;(Z) we set

251
oy (PO
st i= (T )
. A BY\ .
We denote by I'), o the set of all matrices 0. pln I',,. We set

[(di) = {((i g)éfn,o
- {(d e

and put a subgroup I'(d; j(x)) of I'(d; ;):

Z?]

A €4, ;GL,(Z) 5.—.1} :

A € 5,GL,(Z) 5;1}

r 517](1’)) = Fn N (5i7j(x)_lfn70 (5%](5(]))
For A € Z™ and for M € GSp; (R) N My, (Z) we put

For two matrices x = diag(0;, z22,0,—;) and y = diag(0;, y2,2,0,—;) such that x4 =
Y9, Yoo = 'y € M;_;(Z), we say they are equivalent and write [z] = [y], if there
Ui U2 U3
exists a matrix u = [ pugs  Uz2 ugs | € 5¢,jGLn(Z)5Zj1 N GL,(Z) which satisfies
p2u3,1 puz2 Uzs
U229 Us s = Yoo mod p, where us o € M;_;(Z), u11 € M;(Z) and us3 € M,,_;(Z).
We define a function K, on (7,2) € £, x C" by

Kiofj = ng,m,p(T7 Z) = Z Z Z J(k7m761,j(x)M7 )‘)(7-7 Z)7
[z] MeT (6;,5(x))\I'n AEZ™
ranky(z)=a
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where in the first summation on the RHS, [z] runs over all equivalence classes which
satisfy rank,(z) = a. A straightforward calculation shows that the function ¢ defined
by

$(rz)= Y > Gk, ms 6 5(x) M, N)(7, 2)
MeT(8;,5(x))\I'n AEZ™
satisfies the transformation formula |y, .27 = ¢ for any element v € I'). Moreover, the

convergence of ¢ can be shown as in [Zi 89, Theorem 2.1]. Hence K7; belongs to J,gtzlpz.
In Lemma we will show that the form K; is a linear combination of three forms

By lUGR), BLU () and By

Proposition 3.2 (Yamazaki [Ya 89]). The double coset T, <5l On

0, p251_1> [, is a disjoint

UNION

0, 0,
Fn (Oi p25l1) Fn = U U Fn,O(sz',j («T)Fna

i "
0<i<j<n ranky(z)=l-n—i+j

where in the last union on the RHS, [x| runs over all equivalence classes which satisfy
rank,(x) =1 —n—i+j.
Proof. This proposition has been shown in [Ya 89 Corollary 2.2]. O

Lemma 3.3. We obtain

Eli?r)n“/z,n—l(pQ) = Z Kf;i—n_t,_j.
Oﬁigjjﬁn
Proof. Tt follows from Proposition and from the definitions of E;E;ngw
Ka

i?j‘

Vini(p?) and
0

Lemma 3.4. If p*|m, then

Ky = p Rty S >

z=diag(0;,22,2,0n—;) MeT(6;,;)\'n
x2,0="tx9 26 M;_;(Z) modp
rankp(z2,2)=o

A, m (1, plz
x > J(k,lg;(o pln)M,A)(T,pQZ)-

XE(P2Z)ix (pZ)I—i xZn—i
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If p* fm, then

K, = prrenmimtnnit) Z Z

x:diag(Oi,xQ,g,On,j) MEF((SZ'J')\F”
T2,2="w2 2€M;_;(Z) modp
ranky(x2 2)=o

-1
x>y j(k,m; (10” pl x) M,/\>(T,p2)-

XE(PZ)txZn—1

We remark that this lemma has been shown for the case m =1 by Yamazaki [Ya 89].

Proof. The proof of this lemma is an analogue to [Ya 89]. If p? fm, then the proof is
similar to the case m = 1. Hence we assume p?|m and shall prove this lemma.
We put U :={(%¢ ) |s="s € M,(Z)}. Then the set

0 0 0
U .= {(1(? 1‘1) ‘S = (0 0 323> mod D, So3 € Mj—i,n—j(Z)a S33 = t833 < Mn_](Z)}

0 tsa3 s33

is a complete set of representatives of I'(d; ;(z))\I'(d; ;(x))U. Thus

> ST S kb ()M A7, 2)

[x] MeT (65,5 (x))\I'n AEZ™

- Z Z Z j(kvm : 5i7j(x)M7 /\)(Tv Z) Z (p mt>‘5 55 1/\)

[x] MEF((SLJ' (.Z‘))U\Fn AEZ™ <1n S )GU/
ranky(z)=a 0 1n

= pUTIE e § 3 > jlkom: 6;(x) M, N)(7, 2).

W] MET(i;@)U\Tw AL
ranky(z)=a

We remark
Jlksm 8ig(@) M) (r,2) = pT T e(m AP O 4 pT e)h + 29 mA ).

Hence if we put X = p?5; '\, then X € (p*Z)" x (pZ)’~* x Z" 7 and we have
i.j

jlk,m s 6i5(x), M) (7, 2) = p Pk, p*m (15 p[f)ﬁ’)'(ﬂp%)‘
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Thus
« o —k(2n—i—j)+(n—j)(n—i+1
Ko = prhenmiiteepn-in 30 3
[x] MeT(6;,;(x))U\In
ranky(z)=a
X > Gk, p~*m: (16”’ 1x> M, X)(7,p?2)

N €(p2Z)i x (pZ)i—i x Zn—i

_ p_k(zn—i—j)+(n—j)(n—i+1) Z Z Z

T u 0 MeT r,
mnk}g(}x):a (0 tu_l)er(a. () U\D(8;,;) MET (i i)\
8 Z j(k,p~*m (1(? pri et )M, LN (7, p*2).

N€(p2Z)i X (pZ)I —ixZ"—3

Here, the matrix v in the above summation belongs to ¢; ;GL(n, Z)égjl NGL(n,Z). Hence
tu stabilizes the lattice (p*Z)! x (pZ)’~* x Z"~7. Furthermore, the summation over the
equivalence classes [x] and the summation over the representatives of I'(9; j(x))U\L'(d; ;)
turn into the summation over x = diag(0, 22, 0) such that xgo = 'w29 € M;_;(Z) mod p
and rank,(z) = a. Therefore we conclude this lemma. O

3.3. Summation G7%(m, ). We define

[T =) =17 if1<i<n,
gp(n,i) = (1 ifi =0,

0 otherwise.
For any A € Z™ and for 0 < j < n we define
. m
G7(m,\) = > (fmu) .

r=tzeMy(Z/pZ)
rankpr=j

Proposition 3.5. For m € Z and for A\ € Z™ we have

pL%J(L%Hl)gp(n,j) H (p*—1) if mA=0 mod p,
a=1
G;l(m7 )\) — a:odd B
(—1)iptl (13141 g (n — H (p*=1) ifmA#0 mod p.
a=1
\ a:odd

Proof. If plm, then G%(m, \) = G7}(1,0). And if p f/m, then G} (m, \) = G%(1,A). Hence
we need to calculate the case m = 1. The calculation of G”(l, A) has already been
obtained by [Ya 89, Lemma 3.1]. 0
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3.4. Some cardinalities. In this subsection we will give some lemmas to calculate K';.
For 0 <1 < j <n, we put

H; = 0,GL,(2)6;' N GL,(Z),
Hi; = 0;;GL,(Z)5;} N GL,(Z).
We define two sets

-1
* 0k i
S, = {(ptb *) € GL,(Z) beZ},

—1
% * *
Si,j — { <p2tbl ptbg *> E GLn(Z>

where b, by and by in the above sets are column vectors.

b € Zi, by € Zj_i},

Lemma 3.6. We have
|H\GLn(Z)| = gp(n,i),
’Hi\sz’| = gp(n_17i>-

Furthermore, we have

[Hi \GL(Z)| = p'" P gy(n,j)g,(j, 1),
[Hi\Si| = p"Dgp(n—1,4) gp(n —i,n—j),
[Hi\Siyl = 0" P gy(n = 1,5) 9,5, 7).
Proof. These are elementary. We leave details to the reader. O

Lemma 3.7. Let B(\) be a function on A € Z". We put Lg := (p*Z)" x (pZ) " x 7.
We assume that the sum Z Z B(*A)N) converges absolutely. Then we have
AeH; j\GLn(Z) AeLo

> ) B(AN = ag Y BN +a Y Blph)+ay Yy BN,
AeH; ;\GLn(Z) A€Lo AEZn AEZ™ AEZN
where ag, a1 and as are integers which satisfy
Qo +a; +ay = |HZ’J\GLn(Z)| , Qo +ap = |Hz,j\Sz| and ag = |Hi,j\Si,j| .

Proof. For A\ € 7" we denote by ged(\) the greatest common divisor of all entries in A.
Let X be a complete set of representatives of H; ;\GL,(Z). For A € Z™ we define

N = [{AeX|XeAL}|.

We remark that N(A) does not depend on the choice of X. To show this lemma, it is
enough to calculate N()) for given A € Z".
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By the definition of S; ; and S;, we have

Si; = {AeGL,(Z)
S, = {A€CL,(Z)

110, ...,0,1) € "ALy }

110, ...,0,p) € "ALy } .

Hence we have N(%(0,...,0,1)) = |H;;\S;;| and N(*(0,...,0,p)) = |H;;\Si|. Further-
more, we have N(*(0, ...,0,p?)) = |H; ;\GL,(Z)|.

For any \ € Z", there exists a matrix B € GL,(Z) such that ‘BX = ged(\)*(0, ..., 0, 1).
Thus we have N(\) = N(ged(M)(0, ...,0,1)). Hence N(X) equals to |H; ;\S; |, | Hi;\Si|
or |H; j;\GL,(Z)|, according as ged(p?, ged(N)) = 1, p or p*. Therefore we obtain this
lemma. O

3.5. Calculation of the function K7;. For simplicity we define
Gy (m) = G(m, ),

where A € Z" is an vector which satisfy A # 0 mod p. Due to Proposition [3.5] the value
G%(m) does not depend on the choice of A.

Lemma 3.8. If p*|m, then we have
a _ —k(2n—i—j)+(n—j)(n—i+1 | —1
Ki,j = p ( )+ (n—7)(n—i+ )G{X (0)
X {aOE(Tf)%(T, p’z) + alE,(fgl(T, pz) + CLQE/,E:;)W2 (T, z)} ,
where
ap+ay +as = ’HZJ\GLH(Z” , Qo +ap = ’H’L,j\S’L| and ag = |Hi,j\Si,j‘ .
If p* fm, then we have
Ky = p tenmmr e ) [(GI7H0) — GI7(m) [D(65); T(6:)]
% {guln = 19V, (7,02) + 5" gpn = 1,5 = VB (7, 2) |
+ G (m) [D(0:); T(0i)]
X {gp(n — 1,2’)E,($31(T,pz) +p" g (n—1,i — 1)E,$3Lp2(r, z)}} ,
where T'(0;;) and T(6;) are groups denoted in Section[3.9
In particular, the function K¢, is a linear combination of E(")ﬂz \U(p?), E,(gng@]U(p) and
E(”)

k,mp?°
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Proof. First we assume p*|m. In this case the sum GJ"(m, \') equals to G7*(0) for any
N € Z77". Hence due to Lemma , we obtain

« _ —k(2n—i—j)+(n—j)(n—i+1 —1
Ki,j = p ( F)+(n—5)( )GJ (0)

MeT(5; ;)\

Fn
X > j<k 2,M>\>(sz

XE(P2Z)i X (pZ)i—ixZ"—3I

A
If { A;}, is a complete set of representatives of H; ;\GL,,(Z), then the set { ( Ol ¥ ) }
l

is a complete set of representatives of I'(d; ;)\I'n0. Hence we have

a —k(2n—i—j)+(n—7)(n—i+1 j—1
K& = p ( DH= =1 i =1 () Z Z

Mern,O\Fn AGHZ‘J \GLn (Z)

X Z j(k:, ]%; M, tA/\) (7, p%2).

NE(p?Z)t X (pZ)I —i X Z"—J

From Lemma [3.7] we obtain

—k(2n—i—j)+(n—j)(n—1 j—1 : m
Kfy = ptCrmmremmmheizo) {GUZJ(k,E;M,O(T,pQZ)

MGF’VL,O\F’H. AeZm
. m . m
+ar Y (k —; M,pk> (r.p%2) +as Y j (k —; M,pzk) (1,p%2) ¢ -
AEZL™ p PN=V/AL p

Due to the two identities
A, m 5 .
il k, P;M,pk (1,p°2) = j(k,m; M, \)(7, pz)
and
. m 2 2 . 2
j(k’?;M’p A) (1,p°2) = j(k, mp* M,\)(, 2),

we have

Ko — pfk(2n7ifj)+(nfj)(n7i+1)Gifi(O)

1,J

X {aOE,(:)%(T, p’z) + alElS;L(T, pz) + agE,(;ZLPQ (T, z)} .

P

Thus we showed this lemma for the case p?|m.
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We now assume p? fm. In this case the sum G7~(m, \') equals to GZ7(0) or GZ~*(m),
according as X' € pZ/~" or N'¢pZ’~*. Thus due to Lemma, [3.4 we have

« —k(2n—i—j)+(n—j)(n—i+1 j—1 j—1
Ky = p Herm il G (@i 0) = G m)) Y 3

MeT (6;,)\T'n AE(pZ)I xZ"—I

<lkom M) (rp2) + G m) 3 Y kem MO (7 p2)

MET(6;,;)\T'n AE(pZ)? xZn—i

Here we have

S kemi M N p2)

MeT(8;,5)\I'n AE(pZ)I xZ"—3

= [LE):T0] Y > lkym; M)(r,p2)

MeT(6;)\I'n AE(PpZ)I xZ"—J

= L@@ Y > > i(kym; MTAN) (7, p2)

MeTy, 0\I'n AEH;\G L (Z) Ne(pZ)I xZ"—I

= [T {gp(n— 1LAEL (T p2) + " gp(n = 1, = VB (7. 2)}

and
> o Gk,m; MN)(7,pz)
MEF(JW)\Fn )\E(pZ)iXani
= [P P00 {gp(n = L) B (7. p2) + " gyl — 1i = DE, (7, 2) b
Hence we showed this lemma also for the case p* fm. O

The following proposition has been shown by Yamazaki [Ya 89, Theorem 3.3] for the
case m = 1. We generalize it for any positive-integer m.

Proposition 3.9. For any natural number 1 (0 <1 < n), the form E,gm\‘/},n,l(pQ) is a
linear combination of E. %]U( p?), km]U( ) and E p2 over C.

Proof. This proposition follows from Lemma and Lemma O

3.6. Relation among Jacobi-Eisenstein series. Now we shall calculate the coeffi-
cients in the linear combinations in Proposition This calculation can be directly
done by using the values of G§_;(m) and g,(a,b). However, we will here use the Siegel
®-operators for simplicity.
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We set
( p—2k+2
pF(p—1) if p*|m,
1
Q0,m.p,k 0
Umpk | = p2kH2 popmhAL =k if p? fm and p|m,
a?,m,p,k 1
0
P2kt ok if p fm.
—k+1
\ p + 1
Lemma 3.10. For the Jacobi-Fisenstein series E Yo of degree 1, we have the identity
o 2 1) W O, domni
B (Voa %) Vo) = (B 106, B U®W) EL,) [ 57 arm
? 0 a2 m.p,k

Proof. Since T'(p*15)T; = T'1(p*1y), the relation E( D WVoi(p?) = p‘kE 71U (p) is obvi-
ous.
From Lemma [3.3] we obtain

El(flr)n|‘/i70(p2) = K(()),o + K&,l + K?,l
Due to Lemma and Lemma |3.8, we have

P p*%“E,g ) L (1,p?2) if pPlm,
00 p_%“E § ) (1,p2) if p? fm,

Kl p*(p 1)E()(Tp2) if p|m,
p B L(rz) — p B (.pz)  if pfm,

1
Kﬁl = E,i an (1,2).
Therefore this lemma follows. O

Let Biiy1(X)), Bapy1(Xa, ..., X,,) and Anglﬂ be the matrices introduced in Section .
We recall A‘SZZH = By 1 (p* 7%, p*7F, ..., p" %) and the matrix Ag;ﬁﬂ has the size 2 times
(n+1).

The following proposition has been shown by Yamazaki [Ya 89, Theorem 4.1] for the
case m = 1. We generalize it for any positive-integer m.
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Proposition 3.11. For any Jacobi-Fisenstein series Ek of degree n, the following
identity holds

0 Q0,m,p,k
Bl (Vo ?): s Voo @) = (B UG, EGLIU®), B ) | 075 @ | A8

0 azmppk

Proof. Let m be a positive-integer. Let ® be the Siegel ®-operator for Jacobi forms
introduced in Section . From Lemma [2.2| and from the fact that @(E,gn%) = E,gnn; v,
we have

BELA Vo), Voo @) = By 1 (Vo1 (0), s Ve 1,0(0)) B (077).

Hence by using Siegel ®-operator n — 1 tlmes and by using Lemma |3.10, we have
S (B (Von(p?); s Vao(p*)))
= E(Voa (), Vio(n) Bomss (07,0, i)

(1) 2 1 0, Gompk 2-k k k
- (E’ﬁ% |U(p ) ’U( ) k,mp? ) pik QA1,m,p.k B2,TL+1 (p ; 7p37 ) "'7pn7 )
P 0 A2 m.p,k

On the other hand, due to Proposition [3.9] there exists a 3 x (n+ 1) matrix BX which
satisfies

B |(Von0), Vo)) = (BCR U@, B U ). B,z ) Bl

From this identity we have

QDB Vonp?). o Vao0?)) = (ELR UG, ELLU®), B,z ) BY.

Because three forms E,ill2 U(p?), E,§17)n|U (p) and E,glsz are linearly independent (see

Lemma , we obtain

k 0, Gomak k k k 0, Gompi k

Bn = p_k a1,m,p,k B2,n+1<p2_ 7p3_ 7"'7pn_ ) = p_k a1,m,p,k Az:nJrl'
0 A2 m p,k 0 A2 m p,k

Thus this proposition follows for any positive-integer m. O

4. GENERALIZED MAASS RELATION FOR SIEGEL-EISENSTEIN SERIES

The purpose of this section is to prove Theorem . Let 65:31 be the m-th Fourier-
Jacobi coefficient of Siegel-Eisenstein series E,gnﬂ) , which is introduced in Section .
In this section we write Z for Z, and Z for Z, for simplicity.

dlm d>0 d?|m d>0
dlm d?|m
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4.1. Fourier-Jacobi coefficients. We define an arithmetic function

ZM Ok— 1( );

d2|lm

where p(d) is the Mébius function and we put oy ( Z d"! as usual.
dlm
Lemma 4.1. We obtain
k-1 ~
PP+ 1 m) i p/m,
i — {0 1

P gp(m) if plm.

Proof. The function gx(m) is a multiplicative function, namely gi(ml) = gp(m)gx () if

1
ged(m, 1) = 1. Hence we obtain the identity gp(m) = mF™! H 1+ ﬁ) This
q

q:prime
qlm
lemma follows from this identity. O

The following proposition is a special case of a result in [Bo 83, Satz 7].

Proposition 4.2 (Boecherer [Bo 83]). We have

S an(5) ECLIUG).

d?lm

Proof. For the proof of this proposition, the reader is referred to [Ya 86, Theorem 5.5].
O

Proposition 4.3. For any n > 0 and for any m > 0 we have the identity

Q0,2 pk
m n " .
5 0c(12) (Bl 10670, Bk 0, EL 0@ ) 0050

d2lm anpk
1
= (%10, U @) el ) | P ) |
P p—2k+2

where Opjm is 1 or 0, according as plm or p fm.
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Proof. Due to Proposition [£.2] and Lemma [4.1], this proposition is obtained by straight-
forward calculation as follows. We set nine functions

Z p—zk+2E(n)m U (p2d) g <Z2L)

Egy =
d?|m
=0 (4?)
o - () m
g = >, pre-1E] = |U(pd) g <d2>
d?Im
5=0(p?)
_ (n) m
By = Y E", V().
d?|m d
5=0(p?)
Bgo = > B UG g(5),
d?|m
25=0(p)
Z3#0(p?)
_ n m
Bgs = Y. 07—y B IUGd) e(5).
d?|m
;—'550 )
40 (p?)
n m
Egs = B, U g(5)
d?|m K
7=0(p)
570 (p)
— n m
Egr = Z p QHQEI(g "L|U( d) g <ﬁ>’
d?|m
270 (p)
_ m
Bgs = > (- "B, IUGd) g( ).
d?|m
2570 (p)
and
—k+1 g () m
By = Y 0+ 1E", [U@g(5).
d2

d?|m
5#0(p)
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If ord,m = 1(2), then

aO 5.k
m n " .
> o(5) (Ezi,ignﬂ|U(p2d),E;(g,£g|U(pd)7E](€,2M;|U(d)) a1,
d2‘m a4 CLQ m ok
= Eg + Egs + Egs + Egy + Egs + Egs,
and
Egr = ek m U(p?),
Eg+ Egs = p_k(p — e U (),
Egs+ Egys+ Egs = p_%He,E:"T)np
Because of the assumption ord,m = 1(2), we have 0, = 1.
Hence this proposition follows for the case ord,m =1 (2)
If ord,m = 0(2), then
m aO,d%,p,k
D9 (@) <E;§2;;2|U (v*d), E}"2 U (pd), E}i"f% yU(d)) 01,2 ok
d?|lm d aZ%,p’k
= Eq + Eg+ Egs+ Egr + Egs + Ego,
and
.
Boy = Sp e lUG) 07 D B e
R R 2lUeD(5) -
d?|m
\ 2570 (%)
(
Ego+ Bgs = S g0 el lUp) —p ™ D B |U(pd) g (d2>
d?|m
\ 20 (p?)
w ek: m|U< )
Egs+ Egr + Egy = p 242" 731p

Here 0,2/, is defined by 1 or 0, according as p?lm or p? fm. Because of the assumption
ord,m = 0(2), we have 0y2};m, = Opjm-
Therefore this proposition follows also for the case ord,m = 0(2). O
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4.2. Proof of Theorem Now we shall prove Theorem [I.1] For any prime p and
for any positive-integer d, the operators V,,,_;(p*) and U(d) are compatible. Hence from
Proposition [4.2 Proposition and Proposition 4.3 we have

el (Von(p*), - Vao(07))

= Y a(5) (B (Vont), o Vao?) [U())

d2
d?|lm

0 a(]mpk

= Y o5 (B 060 B 00 B 0@) (27 o) a2k

ol P22 el y 0 a2mpk
0 1
n n — — &
= (B0, U@ eye )| P74 Pt o) | AR
P 0 p—2k+2

Thus we obtain Theorem [I.1.

5. GENERALIZED MAASS RELATION FOR SIEGEL CUSP FORMS

In this section we shall show Theorem [[.2] Theorem and Corollary [I.4] Let
Om € Jkinn nl} be the m-th Fourier-Jacobi coefficient of the Duke-Imamoglu-Ibukiyama-
Tkeda lift I stated in Theorem [1.2]

In this section the letters p and g are reserved for prime numbers. For example, the
symbol le ~ denotes the product over primes p such that p|N.

5.1. Fourier coefficients of ¢,,. We take the Fourier expansion of ¢,,:

Sm(T,2) = > Cu(N,R)e(NT)e('Rz2),

where in the summation N € Symj, ; and R € Z*"~! run over all elements which satisfy

1

ANm — R'R > 0. We set M = <l]tVR oIt
2

such that (—1)"det(2M) = Dy f3,, where D), is a fundamental discriminant and fy; is

a positive integer. Then the (N, R)-th Fourier coefficient C,,,(N, R) of ¢y, is

. We denote by Dy, and by fy; the integers

k—1 ~
Cu(N,R) = C(Du|)fy * [[ Eo(M:0y),
p|fam

where C(|Day|) is the | Dyy|-th Fourier coefficient of & which corresponds to g by Shimura

correspondence, and F,(M; X,) € C[X, + X~ 1] is a certain Laurent polynomial intro-
duced in [Tk 01} §1].
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5.2. Matrix Ag’;j" Let Ag:ﬁﬂ and Aj ,,(X,) be the matrices introduced in Section .

Lemma 5.1. For any even integer k we obtain

—(n—1)(2k=1) 4/

2,21 (p~*~

p,k+n
A2,2n = D

D).
Proof. From the definition of Ag’;’;; 41 we get

pk4+n 2—n—k ,3—n—k n—1—k
A2’2n — B272n(p » P y ey P )

2n—1
- (H pi—n—k) Bé Qn(p%—n—(k:—%),p%—n—(k—%)’ "'ap_%—i_n_(k_%))
=2

(- _ (1
= p DAL, (7)),

5.3. Proof of Theorem Let g € GSp;,, ;(R)NMy,_»(Z) be a matrix such that the
similitude of g is v(g) = p?. We write the coset decomposition I's,_1919,_1 = Uani

with ¢; = (0 Ai gz> We take the Fourier expansion of ¢,,|V (I',—19T9,1):
om—1 Dj

(¢m|V(Fan-19Tan-1)) (1,2) = Y Cunlg; N, R) e(NT) e('Rz),

N,R

where in the summation N € Sym} _, and R € Z?>"~! run over all elements which satisfy
ANmp? — R'R > 0.
We now fix N € Symj, ; and R € Z*"~! such that 4Nmp® — R'R > 0. And we set

N LR
M, = o )
1 <2—1ptR m

Lemma 5.2. The (N, R)-th Fourier coefficient Cy,(g; N, R) of ¢m|V (Ton_1902,—1) is
1 _1 _p—1
Cn(g;N,R) = p*(2n71)(kf§)c<|DM1D f]l\“/hQ Zdet D, "2

X H ﬁq (Mi[diag(p~"*D;, 1)]; ) -
qlf]\/ll[diag(p_ltDi,l)]
Here we regard F, (My[diag(p™'D;,1)]; X,) as 0, if My[diag(p~'D;,1)] & Syms,.
Proof. From the definition of V(I'y,_191'9,-_1) the (IV, R)-th Fourier coefficient of the
form ¢m‘v(r2n—lgr2n—l) 1s

Z det D;(km)c (’DMM ) fJ]\Z% H ﬁq (M ;) ,

alfnmy
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where My ; := M[diag(p~''D;,1)]. Thus this lemma follows from the fact that if M ; is
a half-integral symmetric matrix, then Dy, , = Dy, and far, , = p~®""Y(det D;) far, -
O

Now we shall prove Theorem [I.2] In the same manner as in Lemma we obtain the
fact that the (N, R)-th Fourier coefficient of ekTmln|V(F2n 1909,—1) is

_1 1
p—(2n—1)(k‘—§)hk+% (|IDas,]) fM12 Zdet D, "2

X I1 F, <M1 [diag(p~" D;, 1)]; qk’%> :
41 rty [diag(r= 10Dy 1)
where hy 1 (| Dy |) is the |Dyy, |-th Fourier coefficient of the Cohen type Eisenstein series

of weight k + % which corresponds to the Eisenstein series of weight 2k by the Shimura

correspondence

By virtue of Theorem 1.1}, the form e,i?n;\V(an 19l2,_1) is a linear combination of

(2n—1) (2n—1) 1)
ek+n |U( 2, ek+nm|U( ) and ekm . Hence there exist constants wug, u; and us, such

;mp?
that

(2n 1)

etV (Conoaglonn) = w6l 0 [UGR) + w600 (0) + w2

We remark that the constants ug, u; and uy depend on the choices of p, k, m and n.
The (N, R)-th Fourier coefficient of the form of the above RHS is

ki pk—% =~ —1
Uohm%(’DMlDP k+éfM12 HFq (Mo;qk §>

qlfar
k—1 ~ 1
+u1hk+%(’DM1DfM12 HFq (Ml;qk 2)
alfary
_1 k=1 ~ _1
+U2hk+%(’DM1Dpk 2fan HFq (Mz;qk 2)7
alfat

N %R 1
where M, = ( 1 tp ) ) and My = (N 21;2) Because hy, 1 (|Dyy|) # 0, we
3,7 el 2 2
obtain

(5.1)
pCr 1 Z det D " H ﬁq <M1 [diag(p~'* Dy, 1)]; qk%)

alf vy (diag(p—1t Dy 1)

= uwp 2 []F, (Mo;q’“’%> +ur [[F (Ml;qk’%> +up 2 [ 7, (Mz;q’“’

ql g alfar alfary

N
N———
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We denote by co(N, R), ¢1(N,R) and (N, R) the (N, R)-th Fourier coefficients of

,ffnl U (p?), el(ffn ;|U (p) and e,(ff;ing, respectively. We remark co(N, R) = 0 if p* fm.

Furthermore we remark that c¢o(N,R) = 0 if R ¢ p*Z*"~', and (N,R) = 0 if
R ¢ pz2nfl'
Because the forms in the set { (,?Lnk b |U(d )} , where d runs over all positive-integers

such that d?|m, are linearly independent (see Lernrna and because of Proposition ,

three forms e,ffn p U (p?), e,ffn ;|U (p) and e,(ffg;)ﬁ are linearly independent.

From now on we assume p %|m for simplicity. The proof of Theorem for the case
p? fm is similar to the case p*|m.
There exist pairs of matrices (N;, R;) (j = 1,2, 3) such that

co(N1, Ry) c1(N1, R1) co(Ny, Ry)
det Co(NQ,RQ) Cl(NQ,RQ) C2(N2,RQ> 7é 0.
co(N3, Rs) c¢1(N3, R3) c2(Ns, Rg)

For 7 = 1,2, 3, we define

1 1 1
N; ——R, N, —R, N. R
. 2 2% . J 2 7 . j 7
MY = N P =0 2
2_p2Rj ]? Q_pR] m ERJ mp

and we put a 3 X 3 matrix
C<{<NjaRj)}j§ {Xq}q:prime> = H Fy (Mi(j)§Xq>
Q|f1wi(j)

Then from the identity (5.1)) we have

p@n-D(k-3) Z (det D;) ™"

;u

Hq|f dlag _1tDz> 1)]aq 1)

MP [diag(p~1tD;, 1)]; qk_%>

1<1) [diag(p—1tD;,1)]

;u

;q

X Hq|f1u(2)[dmg —1tp,,1)] (
(3) —1t7). . k—l>
WS et (M (diag(p~'*D;, 1)]; "2

= O({0 R (" H)) "

1
upp~ e



ON GENERALIZED MAASS RELATIONS 29
Hence we obtain
1 _1,\1
>~ (et D)2 C (LN, o) a3,
(M( [diag(p~"D;, D]; 4"+ )
d1ag 1D 1)]; qk_%)

M(S) [diag(p~ ' D;, 1)]; qk_%>

q|f (1) [dzag(piltD 1)

X quf

HQ|f

) (diag(p=1tD; 1)

AA

[dzag _ltD 1)
ug p* 3
Uy

1
uyp~ e

_ p(anl)(kf%)

The RHS of the above identity does not depend on the choices of (N;, R;) (j = 1,2, 3).
Furthermore, the above identity holds for infinitely many integer k. Therefore there
exist Laurent polynomials ®;(X,) € C[X,, + X!| (i = 0,1,2) which are independent of
the choices of (N;, R;) (j = 1,2,3), such that

3 (det D)3 C({(Nw R;)}; {Xq}Q> R

i

(M< [diag(p~ Dy, 1)) X,

M [diag(p~'tD;, 1)];Xq)
1®
1

quf

Mfl) [diag(p—1tD; 1)

X Hq|f 1(2)[dzag(p71tD 1)

I, diag(p~ Dy, D]; X,

M§3> [diag(piltD 1)

AA

In particular, we have

Z det D;n_% H F, (My[diag(p~""D;, 1)]; X,)

qlfMl [diag(p~1tD;,1)]

) [ 7 (Mo X,) + ) [IE (M X,) + 02(X,) [[F (M X,)

alfarg alfay alfary
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Therefore, by substituting X, = o, in the above identity and by using the relations
pfar, = fan, = p~ ' far, and Dy, = Dy, = Dyy,, we obtain

1 1
pCVEDC (|Dagy|) frr ZdetD E

< ] FEO4 [diag(p‘“Di, 1) )

q‘fMl [diag(p—1tD;,1)]

—(9n—1)(k—1 _1 k=3 i
= pCnVE=D S Dy (0,) pF2C (1D ]) fa? T F (Mos )

alfag
k-1 ~
+ @1(ap) C(IDansl) far,® HFq (Mi; ag)
alfary
+ Do) pFT2C (|Dagy)) f HF (Ma; )
alfary
Thus
2n—1)(k—2 k—1 2 k+1 <I>0(ap)
S|V (Can_1gTan—1) = p~ " D=2) (p “205|Up), ¢n|U(p),p~ +5¢me> ®, (ay)
CI>2(ap)

Hence there exist Laurent polynomials ®;,(X,) € C[X, + X;!] (j = 0,1,2, | =
0,...,2n — 1) which satisfy

(5.2)
¢m‘<‘/0,2n71<p2)7 (KD} ‘/anl,O(p2>>

m—1)(k—1) (, k-1 2 ket d Poolp) - Pozn-1(ap)

— p O (6w [U(2), 6 U (D), p g2 ) | Prolay) o @ran-a(ay)

Doo(ap) -+ Paon-1(ay)

Here the polynomials @;;(.X,) depend on the choices of p and m, but not on the choice
of f which is the preimage of the Duke-Imamoglu-Ibukiyama-Ikeda lift F. The m-
th Fourier-Jacobi coefficient e,ﬁlg :,2 of Siegel-Eisenstein series satisfies also the identity
. Thus, because of Theorem and of Lemma we obtain

<I>0,0(pk_%) @O,Qn—l(pk_%) 0 1 1 1 1
L R O | e P I e Al R )}
Dy0(p"7) Dy on—1(p"2) 0 —2n+
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Furthermore, this identity holds for infinitely many k. Hence we obtain

(5.3)
Doo(Xp) -+ Poon-1(Xp) 0 ) ) 1
Pro(Xy) 0 Prona(Xy) | = [pTz opE(— 1+p5p\m) Af o (X71).
Doo(Xp) - Pogn1(Xp) 0 pt

In particular, we get Aj,, (X,) = A5,,(X, ). Due to the identities and ( . we
thus obtain Theorem [[.2

5.4. Proof of Theorem [1.3] We remark that the m-th Fourier-Jacobi coefficient ¢,,
(2n—1) cusp . . . .

of F belongs to Jk ‘nm - From the identity 1} in Section and from Theorem

we obtain

O (7, 0)[(To,20-1(P?) -, Ton—1,0(p?))

0 1
_ p2nk+n—1 <¢ﬂ2 (7-’ 0), ¢m(77 0)7 gbmpz (7'7 0)) pikin pikin(—l +p 5p|m) A,2,2n(ap)‘
’ 0 p2k—2mt2

Due to the identity F ((6 g)) = Z Om(7,0)e(mw), we have

m>0

S {0 (70) + 74 P8y (7.0) 57 0(7.0)  e(m)

m>0

9k—2n 0
- 2k—2n+2 F((g w))’ T1,0(p2),

where in the RHS we regard that the Hecke operator T1,o(p2) acts on F' ((g 2)) as

a function of w € $; for a fixed 7 € §;. Therefore

Y (T 0)(Tozn-1(P%); ey Ton-1,0(p%)e(me)

m>0

_ . 2nk+n—1 —k—n T 0 —2k—2n+2 T 0
= e (e (5 5)) e (@)

We denote by (hi(w), ho(w)),, the Petersson inner product of two elliptic modular forms
hi, he. The symbol \,(p?) denotes the eigenvalue of g for T} (p?).

)
e (£ )) ) = F1te)
(P (G 5))] many st = xize

ﬂuﬁoA@A%»
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we obtain
Frgl(Togn-1(0), ., Ton-10(p*))

= <Z G (T, 0)|(To20-1(P%); -+, Ton-1,0(p) Je(muw), g(w)>

m>0

Therefore we proved Theorem [1.3]

5.5. Proof of Corollary Let {po, pt1, --s flon—1} be the Satake parameter of Fy,
at a prime p. We recall

3_ 5_ _3
Ap0n(Xp) = Boou(p?™" Xy, p2 7" Xy, p7 X,
where the matrices A; ,, and By ,,, are defined in Section . Because of the construction
of Aj,,(X,), the matrix Aj,, (a;) determines a Satake parameter {j, ..., 2,1} up to
the action of the Weyl group Ws,_1. Hence we can take
3_ 5_ _3
{/'LQa "'7[’6271—1} = {p2 na/p’p2 napv - P 2+nap}'

Now, from Section [2.6] and Section [2.3], we recall
(e(To2n1(0")), (Tr2n-2(1))s - (Ton-1,0(p?)))

= (H Xl) (@(TOJ@Q))’ @(Tl,o(pz)))B;,zn(XQ; vy Xon_1)

and p2py - -+ fion—1 = p®"~ Yk where ¢ is the Satake isomorphism denoted in Section [2.6,

and where T} 2,_(p*) (I =0, ...,2n) is the Hecke operator denoted in . Furthermore,
from a straightforward calculation we have

P(Toa(p?) = p ' XGXy,
p(Tio(p?)) = P XgXa(pXi'+ (p— 1) +pX1).
From Theorem [I.3 and the above relations, we have
p2nk+n—1 (p—k—n7 p—2k—2n+2/\g<p2)) A/2,2n(ap)

2n—1
= (H Ui) (P~ opn, P g (pp 4 (= 1) + ppa)) By o (fi2, s flan—1)-
=2

Hence, from the fact that the rank of the matrix Aj,,(a,) is two, we obtain

pui (=D +pm = p NP,
On the other hand, we have A\y(p*) = p**"2(pS2 + (p — 1) + pB,?). Thus we can take
pi1 = (2. Hence we obtain

3_ 5_ _3
{pa, o, pges pion—} = { ;,pQ "o, p2 "y, D 2+”ap}
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up to the action of the Weyl group Ws,,_;.
The standard L-function of Fy, is

2n—1 -1
L(s, Frgst) = [[S@=p) ] {0 = pip™)(1 = i 'p7")}
P i=1
= J[Ka—p) (0 =81 =8,
P
2n—2 ) -1
% H {(1 — ap (1 — Oé;lp—i—g-i-n—s)}
i=1
2n—2 - o 1
= L9 A) [T T {0 - ™51 - oy 'y
p =1
: k—1_—s —1, k—1-s -1 :
Since L(s, f) = H {(1 —app" 2 ) (1~ pE )} , we obtain Corollary |1.4}
p
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