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Abstract

We present the results of the Nobeyama Radio Observatory (NRO) M33 All Disk

(30′ × 30′, or 7.3 kpc × 7.3 kpc) Survey of Giant Molecular Clouds (NRO MAGiC)

based on 12CO (J = 1–0) observations using the NRO 45-m telescope. The spatial

resolution of the resultant map is 19′′.3, corresponding to 81 pc, which is sufficient

to identify each Giant Molecular Cloud (GMC) in the disk. We found clumpy struc-

tures with a typical spatial scale of ∼100 pc, corresponding to GMCs, and no diffuse,

smoothly distributed component of molecular gas at this sensitivity. The overall dis-

tribution of molecular gas roughly agrees with that of Hi. However, closer inspection

of the CO and Hi maps suggests that not every CO emission is associated with local

Hi peaks, particularly in the inner portion of the disk (r < 2 kpc), although most

of CO emission is located at the local Hi peaks in the outer radii. We found that
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most uncovered GMCs are accompanied by massive star-forming regions, although

the star formation rates (SFRs) vary widely from cloud to cloud. The azimuthally

averaged Hi gas surface density exhibits a flat radial distribution. However, the CO

radial distribution shows a significant enhancement within the central 1–2 kpc region,

which is very similar to that of the SFR. We obtained a map of the molecular fraction,

fmol = ΣH2/(ΣHi +ΣH2), at a 100-pc resolution. This is the first fmol map covering an

entire galaxy with a GMC-scale resolution. We find that fmol tends to be high near

the center. The correlation between fmol and gas surface density shows two distinct

sequences. The presence of two correlation sequences can be explained by differences

in metallicity, i.e., higher (∼2-fold) metallicity in the central region (r < 1.5 kpc) than

in the outer parts. Alternatively, differences in scale height can also account for the

two sequences, i.e., increased scale height toward the outer disk.

Key words: galaxies: individual (M33) – galaxies: ISM – radio lines: galaxies

1. Introduction

The interstellar medium (ISM) is one of the essential components of galaxies because

stars are born in and return to them. The ISM is greatly influenced by massive stars due to

their stellar winds and supernova after their death. Therefore, the formation process of massive

stars within the ISM is crucial for understanding of the nature and evolution of galaxies. In

the Milky Way Galaxy, a large fraction of the ISM is in the form of Giant Molecular Clouds

(GMCs; Sanders et al. 1985; Scoville & Sanders 1987), and they are known to be major sites

of massive star formation (Waller et al. 1987).

At this spatial scale, i.e., a few tens to a hundred pc we can find a wide variety of

star-formation activities and the nature of molecular clouds. For example, in the LMC, the

variation in star-formation activity from cloud to cloud also becomes visible at this spatial

scale, and it is interpreted as indicating different evolutionary stages of GMCs along the star

formation processes (Kawamura et al. 2009). Furthermore, no tight correlation between the

molecular gas masses and star formation rates (SFRs) can be found among GMCs in M33 seen

at a scale of ∼100 pc or smaller (Onodera et al. 2010), despite the fact that there exists a tight

correlation between the molecular gas masses and SFRs at scales of a few thousand to a few

hundred pc in galaxies, known as the Kenicutt–Schmidt law (K-S law; Kennicutt 1998). The

reported breakdown of the K-S law in M33 is presumably due to the differences in the star-

formation properties, i.e., GMCs at different evolutionary stages (Onodera et al. 2010). With

∼100-pc-scale observations of multitransition CO lines, the coexistence of GMCs in various

evolutionary stages has also been reported within the supergiant Hii region NGC 604 in M33,

suggesting that sequential star formation is on-going (Tosaki et al. 2007; Miura et al. 2010).
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Consequently, a survey of GMCs at a spatial scale of ∼100 pc is essential for understanding of

the processes of massive stars from the ISM.

In addition to this, an unbiased survey is also important because it can sample GMCs

in various environments, i.e., in the central region, outer region, spiral arms, inter-arm regions,

etc. Formations of GMCs, dense molecular gas, and massive stars will be affected not only

by local processes within individual GMCs but also by these global structures of a galaxy or

environments within a galaxy.

Furthermore, the transition from atomic gas to molecular gas is also essential to under-

standing the nature and evolution of the ISM, since the first phase of star formation process

is the formation of a dense gas cloud from the diffuse ISM. Many studies of the transition

from atomic to molecular gas have been conducted using both theoretical and observational

approaches.

Elmegreen (1993) introduced the molecular fraction fmol as a parameter to quantify the

transition. It is the ratio of the molecular gas surface density to the total gas surface density

including both atomic and molecular gases. fmol can be expressed as a function of metallicity,

UV radiation field, and gas pressure. In particular, metallicity is considered to have a strong

impact on the transition of a gas from atomic to molecular. Observationally, the presence of a

“molecular front,” i.e., a sharp transition front from molecular to atomic, has been identified

in some nearby galaxies (Honma et al. 1995; Sofue et al. 1995; Nakanishi et al. 2006). This

suggests that the transition from atomic gas to molecular gas occurs within a very narrow span

along the galactic radius, and the variation in interstellar metallicity has been suggested to play

a crucial role in this phase transition (Honma et al. 1995). However, these previous studies on

the gas phase transition were based on observations at a resolution of a few hundred pc. It

is important to understand the transformation process of the gas phase at the GMC scale, an

essential spatial scale for the ISM, in order to obtain a unified picture of the change in the ISM

from the diffuse atomic phase to massive stars.

M33 is one of the nearest spiral galaxies in the local group (D = 840 kpc; Freedman et

al. 1991). The proximity of M33 allows us to resolve the individual GMCs with the existing

large-aperture single dishes. Since M33 has a relatively small inclination angle of 51◦ (Deul &

van der Hulst 1987), we can obtain a comprehensive view of a galaxy. This is a key advantage

for the study of the correlation between GMC properties and galactic structures such as spiral

arms.

There are many previous studies on the ISM and star formation in M33. Whole-disk

surveys of molecular gas in the 12CO (J = 1–0) line have been conducted with the BIMA

interferometer (Engargiola et al. 2003) and FCRAO 14-m telescope (Heyer et al. 2004), and

Rosolowsky et al. (2007) combined the results of these data with observations with the 45-m

telescope at the Nobeyama Radio Observatory (NRO) toward a part of the disk. A partial

mapping of 12CO (J = 2–1) has also been conducted with the IRAM 30-m telescope and a
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Table 1. Wide-area CO observatons of M33

transition telescope area resolution noise level

spatial velocity

(arcmin2) (arcsec) (km s−1) (mK)

J = 1–0 BIMA∗ 1100 13 2 240

FCRAO 14 m† 960 50 1 53

BIMIA + FCRAO 14 m + NRO 45 m‡ 172 20 2.6 60

NRO 45 m§ 900 19 2.5 130

J = 2–1 IRAM 30 m‖ 650 12 2.6 20–50
∗ Engargiola et al. 2003

† Heyer et al. 2004

‡ Rosolowsky et al. 2007

§ this work

‖ Gratier et al. 2010

comparison between the CO and Hi distributions has been made (Gratier et al. 2010). Selected

regions of M33, such as the supergiant Hii region NGC 604, have also been mapped in 12CO

(J = 1–0) lines using the OVRO array (Wilson & Scoville 1989, 1990) and NMA (Miura et

al. 2010), and 12CO (J = 1–0)/12CO (J = 3–2) multitransition maps of NGC 604 have been

presented using the NRO 45-m and ASTE 10-m dishes (Tosaki et al. 2007). Atomic gas (Hi) in

M33 has been studied with the VLA and Effesberg 100-m telescope (Deul & van der Hulst 1987),

and the cold dust component has been mapped in the 1.1 mm (AzTEC/ASTE; Komugi et

al. 2011) and Herschel SPIRE bands (250–500 µm; Kramer et al. 2010), showing a decline in

cold dust temperature as a function of radius.

Here we present the initial results of the NRO M33 All Disk Survey of Giant Molecular

Clouds (NRO MAGiC) project conducted using the NRO 45-m telescope. By using the largest

millimeter-wave telescope equipped with a multibeam receiver system (Sunada et al. 2000)

combined with an efficient on-the-fly (OTF) technique (Sawada et al. 2008), we have obtained

a sensitive map of 12CO (J = 1–0) emission over almost the entire region of M33 with a uniform

quality of spectra at a GMC-scale spatial resolution. The survey area, sensitivity, and spatial

resolution of this map is compared with that of others of M33 in Table 1.

Initial results of the survey (northern half of the map) have already been used to show the

breakdown of the K-S law at <100-pc scales (Onodera et al. 2010), emphasizing the importance

of ∼100-pc-scale observations of the ISM and star formation.

In this paper, we present an overview of the whole-disk 12CO (J = 1–0) survey of M33

using the NRO 45-m telescope, with particular focus on the atomic-to-molecular gas phase

transition at the GMC scale.
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2. Observations

We observed the 12CO (J = 1–0) emission toward the disk of M33. Figure 1 shows our

observed area, 30′ × 30′, corresponding to 7.3 kpc × 7.3 kpc. It covers most of the molecular

gas disk and includes many star forming regions.

The observations were conducted from January 2008 to April 2009 using the NRO 45-m

telescope equipped with 5 × 5 focal-plane SIS array receivers (BEARS) capable of simultane-

ously observing 25 positions in the sky (Sunada et al. 2000). Using a 100-GHz SIS receiver

(S100) equipped with a single sideband filter, NGC 7538 was observed to measure the sideband

ratio of each beam of BEARS, which consists of double-side-band receivers. The main beam

efficiency measured with S100 was ηmb = 0.32 ± 0.02 at 115 GHz and the errors in the scaling

factors of BEARS were smaller than ∼20%. Wide-band digital autocorrelators (AC) were used

to cover a velocity width of 1332 km s−1 with a velocity resolution of 2.6 km s−1 at 115.271204

GHz. We monitored a SiO maser source IRC+30021 with the five-points observation method

using a 43-GHz SIS receiver (S40) every 1 h to check the pointing accuracy. Note that the final

map was made using data with pointing errors smaller than 7.5′′ and with wind speeds lower

than 10 m s−1 to avoid the systematic intensity loss due to the pointing errors. The resultant

total observation time was 136 h.

The observations were performed with the OTF mapping technique (Sawada et al. 2008).

The “scanning noise” was removed by combining the horizontal and perpendicular scans using

basket weaving. The data reductions were made with the OTF reduction software package

NOSTAR, which was implemented by the NRO. Although the beam size of the telescope was

15′′, the spatial resolution of the final map was 19.3′′ due to the grid spacing of 7.5′′.

The rms noise levels in the velocity channel map with a velocity range of 2.6 km s−1

and the total integrated intensity map were 130 mK and 1.6 K km s−1, respectively, in the

main beam temperature scale. The noise level in the integrated intensity map corresponds to

9.6 ×104M� in the beam size (80 pc) by applying the Galactic CO-to-H2 conversion factor, 3

×1020 cm−2 (K km s−1)−1 (Wilson & Scoville 1990). This value corresponds to a limiting mass

surface density of 15M�pc−2, including a correction of He, and is much lower than the surface

density of GMCs in the Milky Way, 40–100M�pc−2 (Heyer et al. 2009).

3. Results

3.1. Total integrated intensity map and velocity field

Figure 2 shows the total integrated intensity map and intensity-weighted mean radial

velocity map of 12CO (J = 1–0) emission. This figure reveals many clumps with a typical size

of ∼100 pc, similar to that of GMCs in the Milky Way (Scoville & Sanders 1987) rather than

that of Giant Molecular Associations (GMAs; Rand & Kulkarni 1990). There are chains of such

”GMCs” in the northern and southern spiral arms. Note that most of the emission consists of
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Fig. 1. Observed area (dashed box, 30′ × 30′) superposed on a three-color composite optical image of
M33 obtained with the Subaru telescope: courtesy of V. Vansevicius, S. Okamoto, and N. Arimoto.
The optical image consists of three colors, blue (B), green (V), and red (Hα). The Hα image is not
continuum-subtracted.

such GMCs and no diffuse emission is seen in the map above the limiting mas surface density

of 15 M�pc−2. We see no concentration of CO at the galactic center in this map, unlike in

most molecule-rich galaxies (Sakamoto et al. 1999). These properties are consistent with maps

obtained by previous studies (Rosolowsky et al. 2007).

The velocity field of the 12CO (J = 1–0) emission in figure 2 is similar to that of Hi

emission (Deul & van der Hulst 1987), except for a few GMCs (e.g., GMCs located in the

southern arm). The velocity field is globally dominated by galactic rotation, and shows no

clear evidence for streaming motion along spiral arms, unlike grand design spiral galaxies (e.g.,

M51; Kuno & Nakai 1997). This is consistent with low amplitude of arm strength in M33

(Regan & Vogel 1994).

3.2. Comparison with atomic gas and SFR

Figure 3 shows CO intensity maps of M33 superposed on the Hi emission (left) and

SFR (right). The Hi data of M33 are from observations made with the Westerbork Synthesis

Radio Telescope (WSRT) combined those made with the Effelsberg 100-m telescope in order to

compensate for the missing short spacings of the WSRT interferometry data (Deul & van der

Hulst 1987). The original data, with a resolution of 12′′×24′′, was convolved to a resolution of
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(K km s-1) (km s-1)

Fig. 2. Total integrated intensity map (left) and intensity-weighted mean radial velocity map (right) of
12CO (J = 1–0) emission acquired with the NRO 45-m telescope. The map size is 30′ × 30′, and the
effective spatial resolution is 19′′, corresponding to 7.3 kpc ×7.3 kpc and 81 pc at the distance of M33 (D
= 840 kpc), respectively. The contour interval is 0.5 K km s−1 in the T ∗

a scale, corresponding to 1 σ.

24′′× 24′′ (Rosolowsky et al. 2007).

The Hi emission map shows a more wide-spread distribution than that of the CO emis-

sion, and we found CO emission where Hi emission was distributed. However, we also found

different tendencies in the correlation between the CO and Hi distributions for the outer and

inner regions of M33: most CO clouds are associated with local Hi peaks in the outer regions,

whereas no such clear correspondence can be found in the inner regions.

The SFR was calculated using the relation between the SFR and the extinction-corrected

Hα line emission presented by Calzetti et al. (2007). The Hα image of M33 was used by Hoopes

& Walterbos (2000). The Multiband Imaging Photometer for Spitzer (MIPS) 24-µm data

retrieved by the Spitzer Science Center (Rieke et al. 2004) were used for extinction-correction.

The detailed data reduction process for the 24-µm images is explained by Onodera et al. (2010).

The calculated SFR is shown on the right in figure 3(b) as a color scale together with the CO

emission (contour). This figure shows that most of the GMCs are associated with star-forming

regions. However, we also find star-forming regions without GMCs, as well as GMCs without

star-forming regions. Among the GMCs associated with star-forming regions, we can see a

wide range of star-forming activities: some GMCs show elevated SFRs, whereas others only

host calm star-formation activity.
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Fig. 3. Total integrated intensity map of 12CO (J = 1–0) emission (contours) superposed on Hi emission
(left, Rosolowsky et al. 2007) and star-formation rate (right) derived from Hα luminosity (Hoopes &
Walterbos 2000) with extinction-correction using MIPS 24-µm data (Rieke et al. 2004). The contour
interva and lowest contour aew same as figure 2.

3.3. Radial distributions of molecular and atomic gas and SFR

Radial distributions of the molecular and atomic gas surface densities together with SFR

are displayed in figure 4. They are de-projected considering the inclination of M33.

We found that the surface density of atomic gas is higher than that of molecular gas at

all radii in this figure. This tendency is slightly different from the previous result obtained by

Gratier et al. (2010); the molecular gas surface density at central kilopersec is higher than that

of the atomic gas in their result, although overall tendency on H2 and Hi radial distributions

are similar to us. One of the possible causes for this discrepancy can be due to the lower atomic

gas surface density estimated based on the only VLA data without the correction of missing

flux. The radial distribution of molecular gas surface density shows an overall decline, with

two significant local peaks at the radii of 0.1 and 0.5 kpc. By contrast, the surface density of

atomic gas is rather flat, although it shows several small peaks. The radial distribution of SFR

is similar to that of molecular gas; again, it shows a decline from the center to the outer part

of the galaxy, and we also found four local peaks in the radial distribution of SFR, at radii of

0, 0.5, 1, and 3 kpc from the center. The first two peaks near the center correspond to the

local peaks in molecular and atomic gas surface densities. The third SFR peak at r ∼ 1 kpc is

associated with a Hi peak, but there is no corresponding CO peak.
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Fig. 4. Radial distribution of the surface densities of Hi (solid line), H2 (dashed line), and star formation
rate (SFR; dotted line).

4. Discussion

As mentioned above (Section 3.2), most of the molecular clouds are associated with

local Hi peaks in the outer regions, whereas no such clear correspondence can be found in the

inner regions. This suggests that the process of transition from atomic gas to molecular gas

is different in the outer and inner regions and that the process is more efficient in the inner

region. To address the issue quantitatively, we derive the fraction of molecular gas to the total

gas surface densities (Hi + H2), fmol, which is expressed as follows (Elmegreen 1993; Nakanishi

et al. 2006).

fmol =
ΣH2

ΣHI + ΣH2

, (1)

where ΣH2 and ΣHI are the molecular and atomic gas surface densities, respectively.

Figure 5 shows the distribution of fmol values in the panel on the left. This is the first fmol

map covering an entire galaxy with a GMC-scale resolution (∼100 pc). We found that the

fmol values range from ≤0.1 to 0.6, showing difference among GMCs. This figure also reveals

that fmol is higher in the inner region than the outer region. The radial distribution of fmol

(figure 6) also confirms this finding: it has two peaks near the center and at a radius of ∼0.5

kpc, and decreases toward the outer regions. This suggests that molecular gas is formed more

efficiently in the inner region. A sharp decrease in fmol is clearly seen around r = 1–1.5 kpc,

and we suggest that the molecular front (Sofue et al. 1995; Honma et al. 1995) exists in this

region.

The map of fmol is superposed on the SFR map in the panel on the right in figure 5. At

the GMC scale, no correlation between H2 and SFR is seen due to differences in the evolutionary

stages of the GMCs (Onodera et al. 2010), and this figure also indicates no correlation between

fmol and SFR. It indicates that the fraction of molecular gas in each GMC is not affected by

the current star forming activity.
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fmol is determined by ISM pressure (P ), metallicity (Z), and the UV radiation field

(U) (Elmegreen 1993; Nakanishi et al. 2006; Honma et al. 1995; Kuno et al. 1995). Here, in

hydrostatic equilibrium for gas and star disk, total midplane gas pressure is given as follows

(Elmegreen 1989);

P =
π

2
GΣgas(Σgas + Σstar

cg

cs

). (2)

cg and cs are velocity dispersions of gas and stars, respectively. Assuming that the

distributions of stars and gas are similar, Σstar is proportional to Σgas. Then, P is proportional

to the square of the gas surface density, ΣHI+H2
. In other words, fmol can be expressed as a

function of Σ for given Z and U .

Figure 7 shows the correlation between ΣHI+H2
and fmol. The red, blue, and green dots

indicate the measured data points at the inner (r ≤ 1.5 kpc), intermediate (1.5 kpc ≤ r ≤ 3.0

kpc), and outer radii (r ≥ 3.0 kpc), respectively.

We find the presence of two sequences in the ΣHI+H2
–fmol correlation in this figure: One

is the sequence that can be seen in the upper left part of the figure or in the inner region (r≤ 1.5

kpc), showing higher fmol values with respect to a certain ΣHI+H2
. The other sequence can be

found at the lower right part of the figure, i.e., in the outer region (r ≥ 3 kpc) of the galaxy,

where lower fmol values can be seen compared with the previous ΣHI+H2
–fmol sequence. This

means that we find two distinct ΣHI+H2
values for a certain fmol value: i.e., the ΣHI+H2

for a

given fmol value is higher in the outer part of the galaxy than in the inner part for the same

fmol. In other words, for a given gas surface density, fmol value is higher in the inner part than

in the outer part. This causes high fmol of GMCs in the inner region shown in figure 6.

Here we investigate the possible causes for the existence of two sequences in the

ΣHI+H2
–fmol diagram. The first possibility is that molecular gas is formed more efficiently

in the inner part of the galaxy. Another possibility is that we are overestimating the gas den-

sity in the outer part of the galaxy. Dynamical effects such as shock compression due to spiral

arms can also be a possible cause. These three possibilities are examined below.

4.1. Efficient molecular gas formation – metallicity and radiation field

Here we discuss the first possibility. As mentioned above, fmol can be governed by the

interstellar radiation field strength U and metallicity Z. If the radiation field strength U is

constant over the whole radius, the observed higher fmol value in the inner part of the galaxy

can be explained by higher metallicity Z. For instance, the two observed sequences correspond

to two distinct metallicities, i.e., Z = 0.3Z0 and Z = 0.15Z0, for the inner and outer parts,

respectively, at U = U0. Similarly, Z = Z0 and Z = 0.5Z0 at U = 10U0. Here, U0 and Z0 are

the values of U and Z in the solar neighborhood, respectively. In short, a difference in Z of a

factor of two can explain the two observed sequences if U is constant throughout the galaxy.

In fact, an early observational study on the metallicity distribution in M33 (Vilchez et

al. 1988) suggests that there is a sharp increase in metallicity in the central <2.4 kpc region.
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Although the existence of a metallicity gradient within M33 is still under debate (Rosolowsky

and Simon 2008), we suggest that the existence of a difference in Z between the inner and outer

parts of M33 is a plausible explanation for the presence of two sequences in the ΣHI+H2
− fmol

diagram.

On the other hand, a difference in U between the inner and outer parts is needed to

explain the two sequences if we assume that Z is constant across the galaxy. For example, we

suggest that U = 10U0 and U = 50U0 for the inner and outer parts, respectively, if Z = Z0 at

all radii.

Is there any observational evidence for enhanced radiation field strength in the outer

parts of M33? If the interstellar radiation field originates from massive stars, elevated star

formation should be expected in the outer parts, but in reality, we see no such tendency, as

shown in figure 4. Moreover, if this was the case, we could expect a smaller fmol value for larger

SFR, but again no such correlation is found (right panel in figure 5). It is possible for the

strength of the interstellar radiation field to be determined by intermediate- and/or low-mass

stars (e.g., Komugi et al. 2011), but again the strength of U does not account for the observed

tendency of fmol; a significant enhancement of U by a factor of 5 is needed in the outer disk,
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which is inconsistent with the stellar distribution traced by K-band images. Considering these

facts, we suggest that differences in the radiation field strength is not the cause for the presence

of two sequences in the ΣHI+H2
− fmol diagram. For the first possibility, therefore, the two

observed distinct sequences can be explained by differences in Z between the inner and outer

parts.

4.2. Overestimation of gas density

Next, we discuss the possibility that we are overestimating ΣHI+H2
in the outer part. In

figure 7, the value of the horizontal axis corresponds to the gas pressure, or volume density, n.

n is given by the surface density ΣHI+H2
multiplied by the scale height h, and here we assume

that h is constant for all radii. Therefore, if there is a difference in h between the inner and

outer parts of the galaxy, n values should be modified accordingly. For instance, if h is higher by

a factor of 2 at the outer radii, n should be lower by the same factor. In this case, the value of

the horizontal axis in figure 7 is overestimated by a factor of 2 and the true data points should

be shifted to the left. If this is the case, the true ΣHI+H2
–fmol correlation (after correction for

overestimation caused by the differences if h) will show just a single sequence.

Is there any observational support for differences in h in M33? Although no direct

measurement of h has been conducted for in M33, it has been pointed out that h is larger in

the outer parts than in the inner region by a factor of two or more in the Milky Way (Nakanishi

& Sofue 2006). Hence, we cannot reject this scenario as a possible cause of the two observed

sequences.

It is worth noting that the variation in either metallicity or scale height is rather

bimodal—not continuous. NIR observations have revealed the existence of an r1/4 stellar distri-

bution (or bulge) with a scale length of 8′ or 2 kpc (Regan & Vogel 1994). The putative bulge

size of 2 kpc is close to the threshold of these two sequences (∼1.5 kpc), leading to a speculation

that the different environments in and outside the bulge are the cause of the bimodality of the

correlation.

4.3. Dynamical effect

Another possibility is a dynamical effect such as a shock compression of ISM due to

spiral arms. For example, spiral density wave shocks may push the transition from warm

neutral material to cold neutral atomic gas, or simply increased self-shielding to allow for the

the formation of molecules. Such perturbations may be weaker in the outer parts of galaxies

owning to the decrease in the stellar density and shallower spiral potentials. We suggest that

this is indeed another possibility, although it may not be a major driver of the observed two

sequences, because the strength of the spiral density wave in M33 is very weak as mentioned

in previous section.

In summary, we have three plausible explanations for the two observed sequences in

the ΣHI+H2
–fmol diagram. The first is the enhanced molecular formation caused by higher
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metallicity in the inner parts of M33. Another is the idea that two sequences are observed

because of differences in the scale height of the gas disk between the inner and outer parts of

M33, and the true ΣHI+H2
–fmol diagram (after correction for the overestimation of n) will show

just a single correlation sequence. Dynamical effects such as compression of ISM due to spiral

arms may also a possible cause.

5. Summary

We performed all-disk mapping of 12CO (J = 1–0) in the nearby spiral galaxy M33 using

the NRO 45-m telescope. The observed area covers the central 30′× 30′ (7.3 kpc × 7.3 kpc) of

M33, including most of the famous Hii regions such as NGC 604 and NGC 595. The spatial

resolution of the resultant map is 19′′.3, corresponding to 81 pc, which is sufficient to identify

each GMC in the disk.

Our conclusions are summarized as follows.

1. The total integrated intensity map of 12CO (J = 1–0) emission shows a clumpy structure

with a typical spatial scale of ∼100 pc, corresponding to GMCs. We find no diffuse,

smoothly distributed components of molecular gas at this sensitivity.

2. The overall distribution of molecular gas roughly agrees with that of Hi; that is, CO

emission coincides with the peaks of Hi emission in general. However, close inspection

of the CO and Hi maps suggests that not every CO emission is associated with local Hi

peaks, particularly in the inner portions of the disk (r < 2 kpc), although most of the CO

emission is located at the local Hi peaks in the outer parts.

3. We find that most of the uncovered GMCs are accompanied by massive star-forming

regions, although the SFRs vary widely from cloud to cloud.

4. The azimuthally averaged Hi gas surface density exhibits a flat radial distribution.

However, the CO radial distribution shows a significant enhancement within the central

1–2 kpc region, which is very similar to that of the SFR. We find that Hi is the dominant

component compared with CO at all radii.

5. We obtained a map of molecular fraction, fmol =
ΣH2

ΣHI+ΣH2
, at a 100-pc resolution. This is

the first such map covering an entire galaxy at GMC-scale resolution. We find that fmol

tends to be high in the inner region.

6. The correlation between fmol and gas surface density was investigated. We found two

distinct sequences in the correlation. The presence of two correlation sequences can be

explained by differences in metallicity, i.e., higher metallicity in the central region (r < 1.5

kpc) than in the outer parts (a factor of ∼2). Alternatively, differences in scale height can

also account for the two observed sequences, i.e., increased scale height toward the outer

disk. Dynamical effects such as spiral shocks may also work.
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