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The aim of this paper is to construct a theoretical framework for curriculum 

development in the teaching of mathematical proof at the secondary school level. To 

accomplish this aim, we first search for, through the review of related literature, the 

principal aspects of mathematical proof that should be taken into consideration for 

the framework. In particular, we consider the idea of ―local organization‖ 

introduced by Freudenthal (1971) and the idea of ―mathematical theorem‖ proposed 

by an Italian research group (Mariotti et al., 1997). In terms of these ideas, we then 

develop a framework for teaching mathematical proof and examine elements of the 

framework in line with mathematics curricular content in Japan. Examples and 

implications for curriculum development are also discussed. 

MATHEMATICAL PROOF IN CURRICULUM 

Traditionally, the teaching of mathematical proof was relegated to geometry at the 

secondary school mathematics level. It might be a well-known fact that the majority 

of students were unable to construct valid proofs. Currently, however, there seems to 

be a general trend towards including proof and proving at all levels of school 

mathematics (e.g., NCTM, 2000). Therefore a number of research studies carried out 

at all levels of mathematics have been reported the teaching and learning of proof and 

proving in light of explanation, reasoning, argumentation, and so on (e.g., Mariotti, 

2006; Stylianou et al., 2009; Reid & Knipping, 2010; Hanna & de Villiers, 2012). In 

retrospect, what does such an endeavour mean for improving the teaching of 

mathematical proof at the secondary school level? We think that it is necessary to 

consider—from the perspective of important results of earlier research on proof and 

proving—a more synthesised approach to the mathematical or formal proof in 

curriculum. We cannot ignore the influences of curricular content and sequencing 

when we analyse students‘ constructions of mathematical proofs (Hoyles, 1997). 

However, because of ―the huge variation in when proof in introduced and how it is 

treated in different countries‖ (Hoyles, 1997, p. 7), only a few attempts have so far 

been made at a broader discussion of curricular content and sequencing of 

mathematical proof that could be explicitly introduced at the secondary level in some 

countries, including Japan. There is room for argument on this point. 
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This paper reports on part of an ongoing research project regarding the 

developmental study of the teaching of mathematical proof throughout six years 

(Grades 7-12) of secondary schooling in Japan. It focuses on proposing a theoretical 

framework for curriculum development in the teaching of mathematical proof. For 

this reason, we must draw attention to the theoretical perspectives with a few 

examples, but the discussion of empirical aspects of the framework would take us 

beyond the scope of this paper. Although the present study is targeting Japanese 

secondary school mathematics, in developing a framework we attempt to synthesise 

multiple theoretical perspectives well known within the international mathematics 

education community in order to enable the framework to be comparable with those 

in other countries. Thus, the research questions in this paper are as follows: What 

kinds of teaching contents should be included in the secondary curriculum for the 

teaching of mathematical proof? and What kinds of evolution should be envisioned in 

the course of the curriculum? 

THEORETICAL PERSPECTIVES 

“Proof” and “Demonstration” 

What is meant by ―mathematical proof‖? There is the distinction often made in some 

countries between ―proof‖ and ―demonstration‖. For example, Balacheff (1987) 

describes the French distinction between ―prevue‖ and ―démonstration‖ as follows: 

We call proof an explanation accepted by a given community at a given moment… 

Within the mathematical community only explanations adopting a particular form can be 

accepted as proofs. They are an organised succession of statements following specified 

rules: a statement is known to be true or is deduced from those which precede it using a 

deductive rule taken from a well defined set of rules. We call such proofs 

―démonstrations‖. (Balacheff, 1987, p. 148: English translation cited from Reid & 

Knipping (2010, pp. 32-33)) 

In Balacheff‘s sense, ―démonstration‖ in French can be translated as ―mathematical 

proof‖ in English, and it is distinguished from ―proof‖. Although ―most English 

writers do not use ‗proof‘ and ‗mathematical proof‘ in the same way as Balacheff 

does‖ (Reid & Knipping, 2010, p. 33), within the Japanese mathematics education 

community, we sometimes make a similar distinction between ―proof (shoumei)‖ and 

―mathematical proof (ronshou)‖ (e.g., Hirabayashi, 1991; Japan Society of 

Mathematical Education, 1966). Thus, in this paper we would like to use the word 

―mathematical proof‖ in the special sense of ―démonstration‖ as Balacheff says.  

The distinction between proof and mathematical proof implies that these words are 

often discussed in relation to the statements or theorems to be proven and the system 

of mathematics in which the proof is carried out. We, therefore, attempt to consider 

organisation or systematisation of statements as the principal aspects of mathematical 

proof. In order to do so, the idea of ―local organization‖ (Freudenthal, 1971) and the 

idea of ―mathematical theorem‖ (Mariotti et al., 1997) are taken into account.  
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Local Organization 

Freudenthal (1971; 1973) proposed the idea of local organization and emphasised the 

significance of mathematical activities based on the local organization in geometry. 

Local organization is an important didactic idea proposed as distinguished from the 

idea of global organization based on the axiomatic system:  

Indeed, a student who never exercised organising a subject matter on local levels will not 

succeed on the global one. (Frendenthal, 1971, p. 426) 

In general, what we do if we create and if we apply mathematics, is an activity of local 

organization. Beginners in mathematics cannot do even more than that. Every teacher 

knows that most students can produce and understand only short deduction chains. They 

cannot grasp long proofs as a whole, and still can they view substantial part of 

mathematics as a deductive system. (ibid., p. 431) 

What Freudenthal means by local organization is shown by this example of the proof 

of the perpendicular bisectors of a triangle. Consider a question by the teacher: ―draw 

the bisectors of AB and BC, which intersect at M; look where the bisector of AC 

passes‖. Freudenthal provides the analysis of the following proof: 

The proof rests on the property of the bisector of XY being the set of all points equidistant 

from X and Y, which may have been recognised by symmetry arguments. M is on the 

bisector of AB whence 

 MA = MB ; 

M is on the bisector of BC where 

 MB = MC 

From both follows 

 MA = MC, 

whence M is on the bisector of AC. (Freudenthal, 1971, p. 429)  

In his view, students need not be able to prove the equidistance property of the 

perpendicular bisector, because this property may be, for students who do not have 

the idea of a relational system, taken for granted, and it ―cannot contribute anything 

to the understanding of the circumcircle theorem‖ (ibid., p. 430). In line with 

Freudenthal‘s idea, Hanna and Jahnke (2002) proposed a distinction between ―small 

theory‖ and ―large theory‖, and they remarked that ―instead of building a large theory 

(namely, Euclidean geometry) in the course of the curriculum, it seems to be more 

appropriate to work in several small theories‖ (p. 3). Here it is important to note that 

the property taken for granted in the local organization or small theory is consistent 

with the theorem proven in the global organization or large theory. We think that 

such a distinction can be one of the principal aspects of teaching mathematical proof 

that should be taken into consideration when developing a curriculum.  

Mathematical Theorem 

In order to elaborate on the relationship between mathematical proof and local 

organization, we consider another important theoretical perspective—the idea of 

―mathematical theorem‖ proposed by the Italian research group (Mariotti et al., 1997; 
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Mariotti, 2006: Antonini & Mariotti, 2008). According to the characterisation by 

Mariotti et al. (1997), a mathematical theorem consists of a system of relations 

between a statement, its proof, and the theory within which the proof make sense. 

Indeed, in mathematicians‘ mathematical practice, a mathematical assertion such as a 

proposition and its validation is always considered in a certain theoretical context 

such as geometrical, arithmetic, algebraic, and other contexts; ―the existence of a 

reference theory as a system of shared principles and deduction rules is needed if we 

are to speak of proof in a mathematical sense‖ (Mariotti et al., 1997, p. 182). We 

consider that these three elements—statement, proof, and theory—that characterise a 

mathematical theorem can be principal aspects of teaching mathematical proof that 

evolve throughout secondary school mathematics. We think that, in particular, the 

nature of theory can be well characterised by the idea of local organization.  

ELEMENTS OF A THEORETICAL FRAMEWORK OF TEACHING 

MATHEMATICAL PROOF 

The methodology we adopt in the present study is that of synthesising the theoretical 

perspectives mentioned in the previous section and of examining the contents and 

levels of mathematical proof in terms of ―statement‖, ―proof‖, and ―theory‖ in line 

with mathematics curricular content in Japan. In this way, we develop a framework 

for teaching mathematical proof that allows us to design a curriculum. 

Contents of “Statement”, “Proof”, and “Theory” 

We first attempt to identify the contents of ―statement‖, ―proof‖, and ―theory‖ 

respectively. Here we lean on logical points of view to identify the different kinds of 

―statement‖ that could be included in secondary mathematics. We think that there are 

four kinds of propositions: a) singular proposition, b) universal proposition, c) 

existential proposition, and d) other proposition such as negative proposition. 

Although these four kinds of propositions are included in both primary and secondary 

school curriculum in Japan, the distinctions between them—such as distinct universal 

from existential proposition—are not explicitly taught even at the secondary level. 

We next consider the contents of ―proof‖ to be types of proof such as: a) direct proof, 

b) indirect proof, and c) mathematical induction, which are included in the secondary 

school curriculum. As far as indirect proof is concerned, it is formally introduced in 

Grade 10 in Japan, but informally students spontaneously produce indirect 

argumentation (Anotinini & Mariotti, 2008). Therefore it is necessary to examine 

how we could deal with indirect proof progressively in the course of the curriculum.  

In general, the contents of ―theory‖ are both mathematical theory—Euclidean 

geometry, number theory, and so on—and the logical inference rules, such as modus 

ponens, conjunctive inference, and so on. In particular, the latter is referred to ―meta-

theory‖ (Antonini & Mariotti, 2008). This distinction also becomes important in 

discussing secondary school mathematics. Although ―mathematical theory‖ can be 

explicit teaching content, ―meta-theory‖ remains implicit at the secondary level in 
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Japan. In order to understand what ―meta-theory‖ is like, let us show a proof by 

contradiction as an example (see Antonini & Mariotti (2008) for detailed analysis). 

Statements: Let a and b be two real numbers. If ab = 0, then a =0 or b =0. 

 Proof: Assume that ab = 0, a≠0, and b≠0. One can divide both sides of the equality ab 

= 0 by a and by b, obtaining 1 = 0. It is a contradiction (1≠0). Therefore a =0 or b =0. 

Theory: Properties of equality, real numbers. 

Meta-theory: Law of excluded middle, law of double negation, modus ponens, etc. 

Levels of “Statement”, “Proof”, and “Theory” 

We then attempt to identify the levels of ―statement‖, ―proof‖, and ―theory‖ 

respectively. As far as levels of ―statements‖ are concerned, there are two different 

kinds of educational evolution in terms of the setting of a proof. One level is about 

the object that the statement refers to. It seems reasonable to suppose that there are 

two levels: i) an object of the real world, and ii) an object of the mathematical world. 

For example, in the beginning stage of learning geometry, if the statement (probably 

a singular proposition) refers to ―a written triangle‖, the object of investigation is in 

the real or material world. At a higher stage, if the statement (probably a universal 

proposition) refers to ―any triangle‖, the object of investigation is in mathematical 

world. Another evolution is about the formulation of the statement, because the same 

statement is able to have different representations. In the course of curriculum, it 

seems that there are three levels of formulation of the statement: i) figure, 

manipulation, and gesture; ii) ordinary language and word; and iii) mathematical 

word and symbol. In the case of the universal proposition, for example, the statement 

can be formulated as ―the sum of the interior angles of any triangle is 180°‖. This 

formulation is the second level, although the universal quantifier is not represented as 

the symbol ―"‖, which is the third level. In Japanese language, we rarely say ―any 

triangle‖ or ―all triangles‖ in a textbook or geometry class. Although the third-level 

formulation is not dealt with in the current curriculum, we think that the progressive 

formulation of the statement can be a crucial point of the curriculum development in 

this research project.  

Concerning the levels of ―proof‖, we consider two different kinds of evolution. Since 

these have been discussed in Balacheff‘s (1987) categories of proof so far, similar 

categories can be applied to our framework as levels of ―proof‖; that is, the validation 

and formulation of ―proof‖. Since the same may be said about the formulation levels 

of the statement, here we just mention validation levels. It is fair to say that there are 

three levels of validation: i) explanation, ii) mathematical proof, and iii) formal proof. 

―Explanation‖ includes a discourse by informal reasoning, such as inductive and 

abductive reasoning. Although both ―mathematical proof‖ and ―formal proof‖ are 

considered as intellectual proof in Balacheff‘s sense, ―formal proof‖ is based on 

naïve formalist language such as symbolic logic. And ―mathematical proof‖ that can 

be an accepted discourse in the mathematicians‘ community which means a 

simplified version of ―formal proof‖. For the consideration of a transition from one 
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level to a higher level, well-known Balacheff‘s subcategories—naïve empiricism, 

crucial experiment, generic example, and thought experiment—may be useful.  

We rely on Frendenthal‘s idea of local organization, or on ―small theory‖ and ―large 

theory‖ by Hanna & Jahnke (2002), in order to characterise different levels of 

―theory‖. By focusing on the nature of each system within which the proof is carried 

out, we propose three levels of ―theory‖ as follows: i) logic of the real world, ii) local 

theory, and iii) (quasi-) axiomatic theory. The first level is not the main focus of the 

study in secondary mathematics. If one accepts that a geometric property is to be true 

by means of physical experiment or measurement based on the real world, it can be 

interpreted that the nature of ―theory‖ is based on ―logic of the real world‖. The 

distinction between ―local theory‖ and ―(quasi-) axiomatic theory‖ is rather important 

in secondary schools. The former can be the main focus of study in lower secondary 

school. We put the label ―quasi-‖ onto ―axiomatic theory‖, because it is not relevant 

to deal with a globally organised axiomatic system explicitly in secondary school 

mathematics. As a result, Table 1 provides a summary of the framework that resulted 

from considering contents and levels of three elements. Additionally, in the next 

section, since the transition from ―local theory‖ to ―quasi-axiomatic theory‖ can be a 

key to the curriculum development in upper secondary school, we attempt to draw a 

brief sketch of such a crucial transitional aspect by means of a mathematics textbook.  

 

Table 1: A framework for curriculum development in the teaching of mathematical 

proof—contents and levels 

EXAMPLES AND IMPLICATIONS FOR CURRICULM DEVELOPMENTS 

Let us consider the introduction of mathematical induction [MI] as an example to 

illustrate the nature of ―local theory‖ and ―quasi-axiomatic theory‖. MI is a teaching 

content that is included in the teaching unit of sequence in upper secondary school in 

Japan. MI as a teaching material is a kind of capstone in this teaching unit, which 

 

 

 

 

 

 

 

 Statement Proof Theory 

 a. Singular proposition 

b. Universal proposition 

c. Existential proposition 

d. Others 

a. Direct proof 

b. Indirect proof 

c. Mathematical induction 

a. Normal theory (e.g., 

algebra, geometry, 

calculus, etc.) 

b. Meta-theory (e.g., 

modus ponens, etc.) 

 Object 

i. An object in the real world  

ii. An objects in the 

mathematical world 

Formulation 

i. Figure, manipulation, 

gesture 

ii. Ordinary language, word 

iii. Mathematical word, 

symbol 

Validation 

i. Explanation 

ii. Mathematical proof 

iii. Formal proof 

Formulation 

i. Figure, manipulation, 

gesture 

ii. Ordinary language, word 

iii. Mathematical word, 

symbol 

Nature of system 

i. Logic of the real 

world 

ii. Local theory 

iii. (Quasi-) axiomatic 

theory 

§1. Arithmetic sequence and geometric sequence 

1.1 Sequence and the general term 

1.2 Arithmetic sequence 

1.3 Arithmetic series 

1.4 Geometric sequence 

1.4 Geometric series 

The sum of Sn of the first n terms of 

an arithmetic sequence with the first 

term a and common difference d is 

given by the following formula. 

Sn =
n

2
2a + (n -1)d{ }  

§2. Other kinds of sequence 

 2.1 The sigma notation Σ 

 2.2 Difference of sequence 

 2.3 The sum of various series 

By using above formula and given 

identical equation, the following 

equations are proven. 
1+ 2 + + n = n(n+1) / 2

12 + 22 + + n2 = n(n +1)(2n+1) / 6
 

§3. Mathematical induction 

 3.1 Recurrence relation 

 3.2 Mathematical induction 

The following statements are proven 

by mathematical induction. 

- The sum of the first n positive 
integers is n(n+1)/2 

- The sum of the first n
2
 positive 

integers is n(n+1)(2n+1)/6 
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consists of the following items in a textbook that has been mostly used in an 11
th
 

Grade class. In Table 2, there is space only for the items (left side) and some excerpts 

of concrete statements (right side), though proofs are also described in the textbook. 

 

Table 2: Outline of the teaching unit ―sequence‖ and some excerpts from a textbook 

On the one hand, the contents of §2 can be seen as proof and proving at the level of 

―local theory‖, because the accepted formula (e.g., the sum of Sn of the first n terms) 

and/or given identical equation are deductively used for proving the statements (e.g.,

1+2+ +n = n(n+1) / 2). But part of the formula used in the proof has been acquired by 

a generic pictorial explanation that cannot be accepted as mathematical proof (it may 

be at the level of ―logic of the real world‖), and ready-made identical equations (e.g., 

k3 - (k -1)3 = 3k2 -3k+1 ) without proof are used for proving the statement (e.g., 

12 +22 + +n2 = n(n+1)(2n+1) / 6 ). On the other hand, contents of §3 can be seen as 

proof and proving at the level of ―quasi-axiomatic theory‖ because the statements 

(some of them are the same statements proved in §2) are proven by appeal to the 

Principle of Mathematical Induction (Peano‘s fifth axiom for the foundation of 

natural number) that permits the application of ―a meta-theory‖ (i. e., modus ponens, 

etc.) to establish the truth of the statement about the elements of sets that can be 

placed in one-to-one correspondence with the set N (cf. Tall et al., 2012, p. 39). What 

does it imply for further developmental research? Although the appeal to Peano‘s 

axiom is usually implicit in the proof method of MI, it may be worthwhile at this 

point to relate to the other aspects such as the formulation of ―statement‖ or the 

validation of ―proof‖, and to investigate how more-precise mathematical words might 

affect students‘ proof and proving at the level of ―quasi-axiomatic theory‖ for the 

sake of curriculum development. 
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