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1 Introduction

Let Γ = SL2(Z) and let

x(u, v) = x1u
3 + x2u

2v + x3uv2 + x4v
3

be a binary cubic form with int. coeff..

The action of a matrix

γ =

(

a b

c d

)

∈ Γ

is defined by

(γx)(u, v) = x(au + cv, bu + dv).

The discriminant of x is defined by

D(x) = 18x1x2x3x4 + x2
2x

2
3

−4x1x
3
3 − 4x3

2x4 − 27x2
1x

2
4.

Then

D(γx) = D(x), ∀γ ∈ Γ.

Let

L = {x(u, v); xi ∈ Z},
L̂ = {x ∈ L; x2, x3 ∈ 3Z}.

These sets are Γ-inv..

For any n ∈ Z, n 6= 0, let

L(n) = {x ∈ L; D(x) = n},
L̂(n) = {x ∈ L̂; D(x) = n}.
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We define the class numbers

h(n) = # (Γ\L(n)) ,

ĥ(n) = #
(

Γ\L̂(n)
)

.

Eisenstein, Arndt, Hermite, 19C

h(n) <∞, Tables

To be more precise, let

Γx = {γ ∈ Γ; γx = x}.

Then

|Γx| =
{

1 or 3, D(x) > 0,

1, D(x) < 0.

According to the order of the isotropy subgroup, we define

h1(n) = # (Γ\{x ∈ L(n); |Γx| = 1}) ,

h2(n) = # (Γ\{x ∈ L(n); |Γx| = 3}) .

We define ĥ1(n) and ĥ2(n) similarly.

Shintani, 1972.

ξ1(L, s) =
∞
∑

n=1

h1(n) + 3−1h2(n)

ns
,

ξ2(L, s) =
∞
∑

n=1

h(−n)

ns
,

ξ1(L̂, s) =

∞
∑

n=1

ĥ1(n) + 3−1ĥ2(n)

ns
,

ξ2(L̂, s) =

∞
∑

n=1

ĥ(−n)

ns
.
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These Dirichlet series are abs. conv. for <s > 1, cont. to mero. func. on

C, only poles at s = 1, 5
6

(simple), satisfy the func. eq.
(

ξ1(L, 1− s)

ξ2(L, 1− s)

)

= Γ
(

s− 1

6

)

Γ(s)2Γ
(

s +
1

6

)

×2−136s−2π−4s

(

sin 2πs sin πs

3 sin πs sin 2πs

)(

ξ1(L̂, s)

ξ2(L̂, s)

)

Ohno Conjecture, 1995.

(i) ξ1(L̂, s) = 3−3sξ2(L, s),

(ii) ξ2(L̂, s) = 31−3sξ1(L, s).

We can rewrite the conjecture into the following relations of class num-

bers.

(i)′ ĥ1(27n) +
1

3
ĥ2(27n) = h(−n) ∀n > 0;

(ii)′ ĥ(−27n) = 3h1(n) + h2(n) ∀n > 0.

The func. eq. implies (i) ⇐⇒ (ii).

He also showed that under the conjecture, Diagonalization of func. eq.

by Datskovsky–Wright implies simpler and more symmetric func. equ of

a single zeta function:

Z±(1− s) = Z±(s),

where

Z±(s) = 2s3
3

2
sπ−2s

×Γ(s)Γ
(s

2
+

1

4
∓ 1

6

)

Γ
(s

2
+

1

4
∓ 1

3

)

×
(

3
1

2 ξ1(L, s)± ξ2(L, s)
)

.
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For simplicity, denote by h̃(27n) the left hand side of (i)′:

h̃(27n) = ĥ1(27n) +
1

3
ĥ2(27n).

To prove the conjecture, it is enough to show

h̃(27n) = h(−n) ∀n > 0.

By proving this equation directly, I succeeded to prove the conjecture.

Theorem 1. The conjecture is true.

2 Outline of the proof

Let x ∈ L̂(27n). We write

x(u, v) = x1u
3 + 3x2u

2v + 3x3uv2 + x4v
3, xi ∈ Z.

Let Hx be the Hessian of x.

Hx(u, v) = − 1

36

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂2x

∂u2

∂2x

∂u∂v

∂2x

∂u∂v

∂2x

∂v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Then Hx is a positive definite integral binary quadratic form with disc.

−n, and

Hγx = γHx (∀γ ∈ Γ).

Let k = Q(
√
−n). We now assume that −n is a fund. disc., i.e. the

disc. of k.
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Γ\{bin. quad. forms with disc − n} ←→ Clk

⋃ ⋃

Γ\{Hx; x ∈ L̂(27n)} ←→ Cl
(3)
k

Cl
(3)
k = {c ∈ Clk; c

3 = 1}.

Hence

h̃(27n) = |Cl
(3)
k |.

Datskovsky–Wright, 1986

1

2
ξ2(L, s) =

∑

K:cubic f.,DK<0

|DK |−sηK(2s)

+
1

2

∑

k:imag. quad. f.

|Dk|−sη �
⊕k(2s),

where

ηA(s) = ζ(2s)ζ(3s− 1)
ζA(s)

ζA(2s)
,

ζA(s) =
∏

i

ζKi
(s), A = ⊕iKi.

This expression implies that

h(−n) = 2#{cubic fields with disc.− n}+ 1

= |Cl
(3)
k |

Thus we have

h̃(27n) = h(−n)

under the assumption that −n is a fund. disc..

The case −n = m2Dk, m:square free, is proved by generalizing the

argument above. The case of arbitrary m is proved by some recursive

formulae for h(−np2r) and ĥ(27np2r), r = 0, 1, 2, . . . coming from D-W’s

expression.
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3 Application

Let N3(n) be the number of the cubic fields with discriminant n.

Theorem 2. Let k be an imaginary quadratic field with k 6= Q(
√
−3)

and put n = |Dk|. If 3 - n, then

N3(3n) + N3(27n) = N3(−n),

N3(−n) + N3(−81n) = 3N3(3n) + 1.

If 3|n, then

N3(n/3) + N3(27n) = N3(−n),

N3(−n) + N3(−9n) = 3N3(n/3) + 1.

For any quadratic field k and for any positive integer c, denote by Ok,c

the order of k of conductor c, and denote by rk,c the 3-rank of the ideal

class group of Ok,c. By class field theory, Theorem 2 is equivalent to the

following

Theorem 3. Let k and n be as in Theorem 2 and let k ′ be the real

quadratic field Q(
√

3n). If 3 - n, then rk′,3 = rk,1 and rk,9 = rk′,1 + 1. If

3|n, then rk′,9 = rk,1 and rk,3 = rk′,1 + 1.

Remark 4. Theorem 3 can be viewed as a precise version of Scholz’s

reflection theorem.

Remark 5. The residue of ξ2(L, s) at s = 5
6

is equal to that of
√

3ξ1(L, s).

Hence Z−(s) has only one pole at at s = 1, while Z+(s) has exactly two

poles at s = 1 and s = 5
6
.

Remark 6. If the direct bijection between classes in question can be eas-

ily described in some way, it should be very interesting. However, I have

no idea on this. In general, the number of the equivalence classes of irre-

ducible forms in L̂(27n) does not coincide with that of irreducible forms

in L(−n).
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