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Abstract

The isomorphism between Kohnen’s plus space and Jacobi forms
of index 1 was given by Eichler-Zagier. In this article we generalize
this isomorphism for higher degree in the case of skew-holomorphic
Jacobi forms.
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1 Introduction

Kohnen [8] introduced a certain subspace of modular forms of half
integral weight in order to describe Shimura correspondence more
precisely, namely he defined a subspace that corresponds to modu-
lar forms of integral weight belonging to SL(2,Z). That subspace was
named Kohnen’s plus space. For any even integer k, it was known
that Kohnen’s plus space of weight k − 1/2 is linearly isomorphic to
Jacobi forms of index 1 of weight k as Hecke algebra module. This
fact was shown by Eichler-Zagier [4], and this isomorphism was gen-
eralized for higher degree by Ibukiyama [6]. Also, this isomorphism
was generalized in the case of plus space of odd weight with character
by Hayashida-Ibukiyama [5].

On the other hand, Skoruppa [9] introduced the skew-holomorphic
Jacobi forms of degree 1. For odd integer k, he proved that the
skew-holomorphic Jacobi forms of weight k are linearly isomorphic
to Kohnen’s plus space of weight k − 1/2. Arakawa [3] defined skew-
holomorphic Jacobi forms for general degree and he expected that the
above isomorphism is valid also for higher degree.

The aim of this paper is to generalize the linear isomorphism be-
tween a certain subspace of Siegel modular forms of weight k − 1/2
and skew-holomorphic Jacobi forms of weight k of index 1 for general
degree. More precisely, the space of skew-holomorphic Jacobi forms
of odd (resp. even) weight k of index 1 of degree n is linearly isomor-
phic to a certain subspace of Siegel modular forms of weight k − 1/2
without character (resp. with character) of degree n. This space is a
generalization of the usual plus space in Kohnen [8], Ibukiyama [6].
Moreover, we shall show that this isomorphism commutes with Hecke
operators of both spaces as in [8], [6].

2 The plus space and the skew-holomorphic

Jacobi forms of index 1.

In this section we review the definition of skew-holomorphic Jacobi
forms and define a plus space. Then we shall give a linear isomor-
phism between skew-holomorphic Jacobi forms and the plus space in
Theorem 1. This isomorphism induces a bijection between cusp forms
of skew-holomorphic Jacobi forms and cusp forms of the plus space.
We will also show that this isomorphism commutes with the action of
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Hecke operators (cf. Theorem 2).

2.1 Linear isomorphisms.

For any ring K, we denote by Mn,m(K) the set of n×m matrices with
entries in K, and write Mn(K) = Mn,n(K). We denote by Sym(n,K)
the set of n× n symmetric matrix with entries in K. For any natural
number n, we denote by Hn the Siegel upper half space of degree n,

Hn = {X + iY ∈Mn(C); X,Y ∈ Sym(n,R), Y > 0

(Y : positive definite)} .

We denote by Sp(n,R) the usual real symplectic group of size 2n,

Sp(n,R) =
{
M ∈M2n(R); MJn

tM = Jn
}
,

where Jn =

(
0 −1n
1n 0

)
and 1n is identity matrix of size n. The group

Sp(n,R) acts on Hn × Cn by

M(τ, z) = (Mτ, t(cτ + d)−1z)

= ((aτ + b)(cτ + d)−1, t(cτ + d)−1τ)

for

(τ, z) ∈ Hn × Cn, M =

(
a b
c d

)
∈ Sp(n,R) (a, b, c, d ∈Mn(R)) .

The skew-holomorphic Jacobi forms were first introduced by Skoruppa
[9] in degree one case, and defined for general degree with matrix index
by Arakawa [3].

We write e(∗) = e2πi∗, and denote by Sym∗(n,Z) the set of all n
× n half integral symmetric matrices.

Definition 1 (Skoruppa [9], Arakawa [3]).
Let k be a natural number and let F (τ, z) be a function on (τ, z) ∈
Hn × Cn which is real analytic in the real part and imaginary part
of τ ∈ Hn and holomorphic in z ∈ Cn. When F satisfies the next
conditions (1), (2), and (3), we say that F is a skew-holomorphic
Jacobi form of weight k with index 1 .

(1) F (τ, z + τx + y) = e(−(txτx + 2txz))F (τ, z) for all column
vectors x, y ∈ Zn,
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(2) F |kM = F for all M =

(
a b
c d

)
∈ Sp(n,Z), where

(F |kM) (τ, z) = F (Mτ, t(cτ + d)−1z) det(cτ + d)
1−k|det(cτ + d)|−1

× e(−tz(cτ + d)−1cz),

where α means the complex conjugate of α ∈ C.

(3) F has a Fourier expansion of the following form.

F (τ, z) =
∑

N

∑

r

A(N, r)e(tr(Nτ − 1

2
i(4N − rtr)Y ))e(trz) ,

where Y is the imaginary part of τ , N runs over all elements
in Sym∗(n,Z), and r runs over all elements in Zn satisfying
4N − rtr ≤ 0.

Moreover, if the Fourier coefficients A(N, r) are zero unless 4N −
rtr < 0, then we say that F is a skew-holomorphic Jacobi cusp form.

We denote by J+
k,1 = J

+(n)
k,1 (resp. J+ cusp

k,1 = J
+ cusp(n)
k,1 ) the whole

space of skew-holomorphic Jacobi forms (resp. skew-holomorphic Ja-
cobi cusp forms).

For any column vectors m
′

,m
′′ ∈ Zn, we define theta functions

θm(τ, z) = θm′ ,m′′ (τ, z) of characteristic m = (tm
′

, tm
′′

) by

θm′ ,m′′ (τ, z)

=
∑

p∈Zn

e

(
1

2
t

(
p+

m
′

2

)
τ

(
p+

m
′

2

)
+ t

(
p+

m
′

2

)(
z +

m
′′

2

))
.

For each vector µ ∈ Zn, we set

ϑµ(τ, z) = θµ,0(2τ, 2z).

This function ϑµ(τ, z) depends only on µ modulo 2. It is known that
Jacobi forms can be written as a linear combination of these theta
functions, where coefficients are functions on Hn (cf. Eichler-Zagier
[4], Ibukiyama [6]). We show that the same results hold also for skew-
holomorphic Jacobi forms. By virtue of conditions (1) and (3) of the
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definition of skew-holomorphic Jacobi forms, for any F (τ, z) ∈ J+
k,1

and any x ∈ Zn, we get

F (τ, z) = e
(
txτx+ 2txz

)
F (τ, z + τx)

= e
(
txτx+ 2txz

) ∑

N,r

A(N, r)

×e(tr(Nτ − 1

2
i(4N − rtr)Y ))e(tr(z + τx))

=
∑

N,r

A(N, r)e(tr((N +
1

4
(r + 2x)t(r + 2x) − 1

4
rtr)τ

−1

2
i(4N − rtr)Y )) × e(t(r + 2x)z).

Hence, if r ≡ r
′

mod 2 and if 4N − rtr = 4N
′ − r

′ tr
′

then by
comparing the above equality with the original Fourier expansion of
F (τ, z), we get A(N, r) = A(N

′

, r
′

). Therefore, we have

F (τ, z) =
∑

N,r

A(N, r) e

(
tr((Nτ − 1

2
i(4N − rtr)Y )) + trz

)

=
∑

N,r

A(N, r) e

(
1

4
tr(((4N − rtr)τ )

)
e

(
1

4
trτr + trz

)

=
∑

rmod 2

∑

N

A(N, r) e

(
1

4
tr((4N − rtr)τ )

)

×
∑

λ∈Zn

e
(
t
(
λ+

r

2

)
τ
(
λ+

r

2

)
+ 2 t

(
λ+

r

2

)
z
)
.

Hence, for each element F ∈ J+
k,1, there exists a set of 2n numbers

of anti-holomorphic functions Fµ(τ) (µ ∈ (Z/2Z)n) on Hn satisfying

F (τ, z) =
∑

µ∈(Z/2Z)n

Fµ(τ)ϑµ(τ, z),

where the functions Fµ(τ) are uniquely determined by F and µ and
given by

Fµ(τ) =
∑

N
4N − µtµ ≤ 0

A(N,µ)e

(
1

4
tr
((

4N − µtµ
)
τ
))

.
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Next, we shortly review Siegel modular forms of half integral weight.
We put θm′ ,m′′ (τ) = θm′ ,m′′ (τ, 0). In order to define an automorphy
factor of half integral weight, we put

θ(τ) = θ0,0(2τ, 0) =
∑

p∈Zn

e(tpτp) .

We denote by Γ
(n)
0 (4) the subgroup of Sp(n,Z),

Γ
(n)
0 (4) =

{
M =

(
a b
c d

)
∈ Sp(n,Z) ; c ≡ 0mod 4

}
.

We often drop the ”(n)” and write Γ0(4) instead of Γ
(n)
0 (4) if no con-

fusion is likely. We define a character ψ by ψ(t) =
(
−4
t

)
for any odd

integer t, where
(
∗
∗

)
is the Legendre symbol. We consider a character

of Γ0(4) defined by ψ(det d) for any M =
(
a b
c d

)
∈ Γ0(4). By abuse of

language, we denote this character also by ψ. It is well known that

θ(Mτ)2/θ(τ)2 = ψ(M) det(cτ + d) for any M =
(
a b
c d

)
∈ Γ0(4).

By virtue of the above identity, we define by
(
θ(Mτ)
θ(τ)

)2k−1
an auto-

morphy factor of weight k − 1/2 .

Definition 2 (Siegel modular forms of half integral weight).
Let k ∈ Z, and χ be a character on Γ0(4). We say that a holomorphic
function h on Hn is a Siegel modular form of weight k− 1/2 of degree
n with character χ if h satisfies the following conditions (1), (2).

(1) h(Mτ) = χ(M)
(
θ(Mτ)
θ(τ)

)2k−1
h(τ) , for any M ∈ Γ0(4) .

(2) h is holomorphic at cusps (This condition is satisfied automat-
ically when n ≥ 2 by Koecher principle).

Moreover if h satisfies the following condition (3), we say h is a cusp
form.

(3) The function det(Y )
1

2
(k− 1

2
)|h(τ)| is bounded on Hn, where Y is

the imaginary part of τ .

We denote by Mk−1/2(Γ0(4), χ) (resp. Sk−1/2(Γ0(4), χ)) the space
of Siegel modular forms (resp. Siegel cusp forms) of weight k − 1/2
with character χ.

Let l be an integer and let h ∈ Mk−1/2(Γ0(4), ψ
l), then the func-

tion h has the Fourier expansion h(τ) =
∑

T c(T ) e(tr(Tτ)), where
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T runs over all symmetric half integral matrices. The above Fourier
coefficients satisfy c(T ) = 0, unless T is positive semi-definite. We
define a subspace M+

k−1/2(Γ0(4), ψ
l) of Mk−1/2(Γ0(4), ψ

l) by

M+
k−1/2

(Γ0(4), ψ
l)

=
{
h(τ) ∈Mk−1/2(Γ0(4), ψ

l) ; the coefficients satisfy c(T ) = 0 ,

unless T ≡ (−1)k+l+1µtµ mod 4Sym∗(n,Z) for some µ ∈ Zn
}
.

We put

S+
k−1/2(Γ0(4), ψ

l) = M+
k−1/2(Γ0(4), ψ

l) ∩ Sk−1/2(Γ0(4), ψ
l) .

We say that M+
k−1/2(Γ0(4), ψ

l) is the plus space. These are analogues

of the “plus space” for general degree n with character ψ l. This “plus
space” was first defined for n = 1, l = 0 and k ∈ Z by Kohnen [8],
and was generalized for n > 1, l = 0, and k ∈ 2Z by Ibukiyama [6],
for n > 1, l ≡ k (mod 2) by Hayashida-Ibukiyama [5].

Theorem 1. Let k be a natural number. For F (τ) ∈ J+
k,1, we set

F (τ) =
∑

µ∈(Z/2Z)n

Fµ(τ)ϑµ(τ, z). We define a function σ(F )(τ) on Hn

by :

σ(F )(τ) =
∑

µ∈(Z/2Z)n

Fµ(−4 τ ) .

Then σ(F ) belongs to M+
k−1/2(Γ0(4), ψ

k−1). Moreover, the mapping

σ : F → σ(F ) induces the following linear isomorphisms over C,

J+
k,1

∼= M+
k−1/2(Γ0(4), ψ

k−1) ,

and

J+ cusp
k,1

∼= S+
k−1/2(Γ0(4), ψ

k−1) .

Remark 1. If degree n is odd and integer k is even, thenMk−1/2(Γ0(4), ψ)

= {0} and J+
k,1 = {0}. We can show this fact by using an equality

F (τ,−z) = −F (τ, z) and by using an equality of Fourier coefficients
A(N, r) = A(N,−r).
Remark 2. We denote by J−

k,1 the space of holomorphic Jacobi forms

of weight k of index 1 of degree n (cf [4], [6] ). Let ε = (−1)k+l+1, then
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we can write these linear isomorphisms together including holomorphic
ones as follows;

M+
k−1/2(Γ0(4), ψ

l) ∼= J εk,1 .

2.2 Hecke operators.

In this subsection we review the action of Hecke operators on J+
k,1 and

M+
k−1/2(Γ0(4), ψ

k−1) and describe our results. First we describe Hecke
operators for skew-holomorphic Jacobi forms of index 1. We define

GSp+(n,R)

=
{
M ∈ GL(2n,R) ; MJn

tM = γ(M) Jn , for some γ(M) ∈ R+
}
.

For odd prime p and natural number δ, we define

Vn(p
2δ) =

{
M ∈ GSp+(n,R) ∩M2n(Z) ; MJ tnM = p2δJn

}
.

Let F be a function on Hn × Cn. We define an action of Vn(p
2δ) as

follows

(F |kM)(τ, z)

= p2knδe(−tz(Cτ +D)−1Cz)det(Cτ +D)
1−k|det(Cτ +D)|−1

×F
(
(Aτ +B)(Cτ +D)−1, pδt(Cτ +D)−1z

)
,

where k is an integer and M =

(
A B
C D

)
∈ Vn(p

2δ).

We define an action of M1,2n(R) as follows,

(F |X)(τ, z) = e(tλτλ+ 2tλz) F (τ, z + τλ+ µ) ,

where X = (tλ, tµ) ∈M1,2n(R), and λ, µ ∈Mn,1(R).

For integer s (0 ≤ s ≤ n), we putKs =




1n−s
p1s

p21n−s
p1s


,

and we put a double coset Ts(p
2) = Sp(n,Z)KsSp(n,Z).
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For any F ∈ J+
k,1, we define Hecke operator Ts(p

2) by

F |kTs(p2) =
∑

M∈Sp(n,Z)\Ts(p2)

∑

X∈(Z/pZ)2n

(F |kM)|X ,

where definition does not depend on the choice of the representatives
in the summation, and we have F |kTs(p2) ∈ J+

k,1.

Next we review the Hecke theory of Siegel modular forms of half

integral weight in Zhuravlev [12]. Let ˜GSp+(n,R) be the universal

covering group of GSp+(n,R), namely ˜GSp+(n,R) consists of pairs
of M ∈ GSp+(n,R) and a function φ(τ) on Hn for which |φ(τ)| =
|det M |−1/4|det(C τ +D)|1/2 where M =

(
A B
C D

)
∈ GSp+(n,R). For

(M1, φ1), (M2, φ2) ∈ ˜GSp+(n,R), the product is defined by

(M1, φ1(τ)) · (M2, φ2(τ)) = (M1M2, φ1(M2τ)φ2(τ)).

We can embed Γ0(4) to ˜GSp+(n,R) by

Γ0(4) 3M → (M, θ(Mτ)θ(τ)−1) ∈ ˜GSp+(n,R)

and we denote by Γ̃0(4) the image of Γ0(4). We put K̃s = (Ks, p
(n−s)/2) ∈

˜GSp+(n,R). The Γ̃0(4)-double coset decomposition of K̃s is known

by Zhuravlev [11], and we put T̃s(p
2) = Γ̃0(4)K̃sΓ̃0(4) =

⋃

v

Γ̃0(4)M̃v .

Let χ be a Dirichlet character modulo 4, we define an action of T̃s(p
2)

on Mk−1/2(Γ0(4), χ) as follows :

F |k−1/2,χT̃s(p
2) =

∑

v

χ(det(Dv))
−1φv(τ)

−2k+1F (Mvτ),

where F ∈ Mk−1/2(Γ0(4), χ), we put (Mv , φv(τ)) = M̃v,

(
∗ ∗
∗ Dv

)
=

Mv.

Theorem 2. The linear isomorphism of Theorem 1 commutes with
Hecke operators. Namely, for every F ∈ J+

k,1, for every odd prime p,

and for every Ts(p
2), we have

(−1

p

)s(k−1)

p−2kn−s/2σ(F |kTs(p2))

= p−n(2k−1)/2σ(F )|k−1/2,ψk−1 T̃s(p
2) .
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3 Proofs

In this section we shall prove Theorem 1 and Theorem 2.

3.1 Proof of Theorem 1.

Let F (τ, z) =
∑

µ∈(Z/2Z)n

Fµ(τ)ϑµ(τ, z) be an element of J+
k,1. First, we

shall show that the holomorphic function σ(F )(τ) =
∑

µ∈(Z/2Z)n

Fµ(−4 τ )

belongs to M+
k− 1

2

(Γ0(4), ψ
k−1).

We denote by GL(n,Z) the group of invertible matrices of size n
with entries in Z. In order to show that σ(F ) satisfies the condition (1)
of the definition2, we need the following lemma proved by Ibukiyama
[6].

Lemma 1.
The group Γ0(4) is generated by the following three kinds of elements
:

v(4s) =

(
1n 0
4s 1n

)
, u(s′) =

(
1n s′

0 1n

)
, and t(a) =

(
a 0
0 ta−1

)
.

where s, s′ ∈ Sym(n,Z), and a ∈ GL(n,Z).

By straightforward calculation, we get σ(F )(u(s′)τ) = σ(F )(τ) and
σ(F )(t(a)τ) = ψ(det a)k−1σ(F )(τ).

Now, we shall show an equality σ(F )(v(4s)τ) =
(
θ(v(4s)τ)
θ(τ)

)2k−1
σ(F )(τ).

We need the next proposition proved by Ibukiyama [6].

Proposition 1. For s ∈ Sym(n,Z) and v(s) =

(
1n 0
s 1n

)
, we have

ϑµ(v(s)τ,
t(sτ + 1n)

−1z)

= 2−n det(sτ + 1n)e(
tz(sτ + 1n)

−1sz) θ(
1

4
τ) θ(

1

4
v(s)τ)−1

×
∑

ν,κ∈(Z/2Z)n

e(−1

2
tνµ)e(−1

4
tνsν)e(

1

2
tκν)ϑκ(τ, z).
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By using this proposition and the condition (2) of the definition1,
we obtain

det(sτ + 1n)
k−1|det(sτ + 1n)| e(tz(sτ + 1n)

−1sz)

×
∑

µ∈(Z/2Z)n

Fµ(τ)ϑµ(τ, z)

=
∑

µ∈(Z/2Z)n

Fµ(v(s)τ)ϑµ(v(s)τ,
t (sτ + 1n)

−1z)

= 2−n det(sτ + 1n) e(
tz(sτ + 1n)

−1sz) θ(
1

4
τ) θ(

1

4
v(s)τ)−1

×
∑

µ,ν,κ∈(Z/2Z)n

Fµ(v(s)τ) e(−
1

2
tνµ) e(−1

4
tνsν) e(

1

2
tκν)ϑκ(τ, z) .

Hence, by the uniqueness of Fµ, we have

Fκ(τ) det(sτ + 1n)
k−1|det(sτ + 1n)| det(sτ + 1n)

−1

= 2−n θ(
1

4
τ) θ(

1

4
v(s)τ)−1

∑

µ,ν∈(Z/2Z)n

Fµ(v(s)τ)

×e(−1

2
tνµ) e(−1

4
tνsν) e(

1

2
tκν) .

By easy calculation, we get v(s)·(−4 τ ) = −4 v(−4s)·τ . If we sub-
stitute τ by −4 τ , then we get

(σ(F ))(τ) det(−4sτ + 1n)
k−1 |det(−4sτ + 1n)| det(−4sτ + 1n)

−1

= 2−n θ(−τ) θ(−v(−4s)τ)−1

×
∑

κ,ν,µ∈(Z/2Z)n

Fµ(−4v(−4s)τ ) e(−1

2
tνµ) e(−1

4
tνsν) e(

1

2
tκν)

= θ(−τ) θ(−v(−4s)τ)−1 (σ(F ))(v(−4s)τ) .

On the other hand, we get identities θ(−τ) = θ(τ) , det(−4sτ + 1n)

=
(
θ(v(4s)·(−τ ))

θ(−τ)

)2
, and |det(−4sτ + 1n)| =

(
θ(v(−4s)τ)

θ(τ)

)(
θ(−v(−4s)τ )

θ(−τ)

)

by straightforward calculation.

Hence, we get σ(F )(v(−4s)τ) =
(
θ(v(−4s)τ)

θ(τ)

)2k−1
σ(F )(τ).

This completes the proof of automorphy of σ(F ) for v(4s) .

Consequently, we have σ(F ) ∈ M+
k−1/2(Γ0(4), ψ

k−1).
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Next we shall show that the map σ is a bijection.
We assume that h(τ) is an element of M+

k−1/2(Γ0(4), ψ
k−1), then the

function h(τ) has the Fourier expansion h(τ) =
∑

M≥0

C(M) e(tr(Mτ)).

For each µ ∈ (Z/2Z)n, we define a function hµ by

hµ(τ) =
∑

N
4N + µtµ ≥ 0

C(4N + µtµ) e(
1

4
tr((4N + µtµ)τ)).

Then we get h(τ) =
∑

µ∈(Z/2Z)n

hµ(4τ). We put

G(τ, z) =
∑

µ∈(Z/2Z)n

hµ(−τ)ϑµ(τ, z).

Our purpose is to show that the function G(τ, z) belongs to J+
k,1.

Now, for any x, y ∈ Zn, the theta function ϑµ satisfy next equality,

ϑµ(τ, z + τx+ y) = e(−txτx− 2txz)ϑµ(τ, z).

So G(τ, z) satisfies condition (1) of the definition 1. By definition of
G(τ, z), we can show that G(τ, z) satisfies condition (3) of the defini-
tion 1.

In order to show that G(τ, z) satisfies condition (2) of the definition
1, we check the automorphy of G(τ, z) for three type generators of
Sp(n,Z).

By easy calculation, we getG(u(s)(τ, z)) =G(τ, z) andG(t(a)(τ, z))
= ψ(det a)k−1G(τ, z). We need the following proposition to show the
automorphy of G(τ, z) for v(s).

Proposition 2. For any symmetric integral matrix s and any integer
κ, we have

hκ(τ)

(
θ(1

4v(s)τ)

θ(1
4τ)

)2k−1

= 2−n
∑

ν,µ∈(Z/2Z)n

e(−1

2
tνµ) e(

1

4
tνsν) e(

1

2
tκν)hµ(v(s)τ) .
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Proof. First we claim the following relation:

hκ(τ) = 2−n
∑

s1∈∆

e(
1

2
tκs1κ)h(

1

4
(τ + 2s1)) .

where s1 runs over the set ∆ of all diagonal matrices such that each
diagonal component is 0 or 1. Indeed, for s1 ∈ ∆, it is easy to see that

h(
1

4
(τ + 2s1)) =

∑

µ∈(Z/2Z)n

hµ(τ + 2s1) =
∑

µ∈(Z/2Z)n

e(−1

2
tµs1µ)hµ(τ) .

and

∑

s1∈∆

e(−1

2
tκs1κ) e(−

1

2
tµs1µ) =

∑

s1∈∆

e(−1

2
t(κ− µ)s1(κ− µ))

=

{
2n · · · if κ = µ ,
0 · · · otherwise .

Hence, we get the above relation. Now, for any s1 ∈ ∆, we put

γs(s1) =

(
1n + 2s1s −s1ss1

4s 1n − 2ss1

)
.

Then it is easy to see that γs(s1) ∈ Γ0(4), and (v(s)τ + 2s1)/4 =
γs(s1)((τ + 2s1)/4). Hence, we get the following relation,

h

(
v(s)τ + 2s1

4

)
= det(sτ + 1n)

k−1 θ(
1
4(v(s)τ + 2s1))

θ(1
4(τ + 2s1))

h

(
τ + 2s1

4

)
.

We put ε = (s1)0 which is the diagonal vector of s1. Here we quote
an equality from [6] p.120,

θ

(
v(s)τ + 2s1

4

)
θ

(
τ + 2s1

4

)−1

= θ

(
v(s)τ

4

)
θ
(τ

4

)−1
e

(
−
tεsε

4

)
.

14



Hence, we get

hκ(τ)

(
θ(1

4v(s)τ)

θ(1
4τ)

)2k−1

= 2−n det(sτ + 1n)
k−1 θ(

1
4v(s)τ)

θ(1
4τ)

∑

s1∈∆

e(
1

2
tκs1κ)h(

1

4
(τ + 2s1))

= 2−n
∑

s1∈∆

det(sτ + 1n)
k−1 θ(

1
4(v(s)τ + 2s1))

θ(1
4(τ + 2s1))

× e(
1

4
tεsε)e(

1

2
tκs1κ)h(

1

4
(τ + 2s1))

= 2−n
∑

s1∈∆

e(
1

2
tκs1κ)h(

1

4
(v(s)τ + 2s1))e(

1

4
tεsε)

= 2−n
∑

s1∈∆

∑

µ∈(Z/2Z)n

e(
1

2
tκs1κ)e(

1

4
tεsε)e(−1

2
tµs1µ)hµ(v(s)τ)

= 2−n
∑

ε,µ∈(Z/2Z)n

e(
1

2
tκε− 1

2
tµε+

1

4
tεsε)hµ(v(s)τ) .

Thus we have proved proposition 2.

By using this proposition 2, we obtain

(
θ(1

4v(s)(−τ ))
θ(1

4(−τ))

)2k−1 ∑

κ∈(Z/2Z)n

hκ(−τ)ϑκ(τ, z)

= 2−n
∑

µ∈(Z/2Z)n

hµ(v(s)(−τ ))

×


 ∑

ε,κ∈(Z/2Z)n

e(−1

2
tµε)e(−1

4
tε(−s)ε)e(1

2
tκε)ϑκ(τ, z)




= θ(
1

4
τ)−1θ(

1

4
v(−s)τ) det(−sτ + 1n)

−1e(−tz(−sτ + 1n)
−1(−s)z)

×
∑

µ∈(Z/2Z)n

hµ(v(s)(−τ ))ϑµ(v(−s)·(τ, z)) .
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Moreover, we get

(
θ(1

4v(s)(−τ))
θ(1

4(−τ))

)2k−1
θ(1

4τ)

θ(1
4v(−s)τ)

det(−sτ + 1n)

=

(
θ(v(−4s) · 1

4τ)

θ(1
4τ)

)2k−1

θ(v(−4s) · 1
4τ)

θ(1
4τ)

= det(−sτ + 1n)
k−1 |det(−sτ + 1n)|,

hence, we have

G(v(−s) · (τ, z)) = det(−sτ + 1n)
k−1|det(−sτ + 1n)|

× e
(
tz(−sτ + 1n)

−1(−s)z
)
G(τ, z) .

From the above identity, we deduce that the function G satisfies
the automorphy for v(s), and G is an element of J+

k,1. By definition,
it is clear that σ(G) = h , and hence σ is a bijection.

Now we prove that cusp forms of plus space and cusp forms of
skew-holomorphic Jacobi forms are linearly isomorphic. For f ∈
S+
k−1/2(Γ0(4), ψ

k−1), it is easy to see that σ−1(f) ∈ J+ cusp
k,1 .

For F ∈ J+ cusp
k,1 , we shall show that σ(F ) is an element of S+

k−1/2(Γ0(4), ψ
k−1).

The following lemma is well known and the proof will be omitted
here.

Lemma 2. we have

ϑr(−τ−1, τ−1z) = 2−n/2 det(−iτ)1/2 e(tzτ−1z)
∑

µ∈(Z/2Z)n

e(
1

2
trµ)ϑµ(τ, z).

where det(−iτ)1/2 =
(∫

x∈Rn e
πitxτxd x

)−1
.

We put F (τ, z) =
∑

r Fr(−τ)ϑr(τ, z) ∈ J+
k,1, then we obtain the

following equality by using lemma 2,

Fr(−τ−1) = 2−n/2 in(k−1) (det(−iτ)1/2)(2k−1)
∑

µ∈(Z/2Z)n

e(
1

2
trµ)Fµ(τ).

We already saw that

Fr(τ + s) = e(
1

4
trsr)Fr(τ), and Fr(aτ

ta) = ψ(det a)k−1 Ftar(τ),
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for each s ∈ Sym(n,Z) and each a ∈ GL(n,Z) .

The equalities above lead to the following lemma.

Lemma 3. If we consider (Fr(τ))r as a column vector valued func-
tion, then we have

(Fr(Mτ))r = U(M, τ) (Fr(τ))r , for each M =

(
A B
C D

)
∈ Sp(n,Z) ,

where |det(Cτ +D)|−k+1/2 U(M, τ) is some unitary matrix of size n.

Now, we put F (τ, z) =
∑

r Fr(−τ)ϑr(τ, z) ∈ J+ cusp
k,1 . If we fix a

constant λ > 0 then the function det(Y )
1

2
(k− 1

2
)|Fr(τ)| is bounded on

the domain det(Y ) > λ.
There exists some constant cn > 0 that depends only on n, with the

property that for any element τ ∈ Hn there exists some M ∈ Sp(n,Z)
satisfying Im(M · τ) > cn (cf. [1]). We put a scalar valued function
h(τ) =

∑
r Fr(τ). By using previous lemma and the above fact, it can

be shown that the function det(Y )
1

2
(k− 1

2
)|h(τ)| is bounded on Hn.

Because σ(F )(τ) = h(4τ), the function det(Y )
1

2
(k− 1

2
)|σ(F )(τ)| is

bounded on Hn. This means that the function σ(F ) is a cusp form.
This completes the proof of Theorem 1.

3.2 proof of Theorem 2.

In this subsection we shall show Theorem 2.
For odd primes p, explicit formulas for the left Γ̃0(4)-coset decom-

positions of the double cosets were determined by Zhuravlev [11]. Let

Ks be a matrix in subsection 2.2, we recallKs =




1n−s
p1s

p21n−s
p1s


.

We start with the following lemma.

Lemma 4. The left Sp(n,Z)-coset decomposition of the double coset
Sp(n,Z)KsSp(n,Z) is given by

Sp(n,Z)KsSp(n,Z) =
∐

i,j

∐

A,B1,B2,U

Sp(n,Z)Mi,j(A,B1, B2)PU ,
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where the notations and the summations are given as follows. The first
product is over all integers i, j such that s ≤ i ≤ n and 0 ≤ j ≤ n− i.
In the second product the matrix A runs over a full set of repre-
sentatives for the subset of classes in Sym(i,Z)/pSym(i,Z) having
rank i − s, and B1, B2 run over a full set of representatives for
Mi,j(Z)/pMi,j(Z) and Sym(j,Z)/p2 Sym(j,Z), respectively. The ma-
trix U runs over a complete set of representatives of (SL(n,Z) ∩
D−1
i,j SL(n,Z)Di,j)\SL(n,Z). We use Mi,j(A,B1, B2) for Mi,j(A,B1, B2) =

(
p2D−1

i,j X

0 Di,j

)
, where Di,j =




1n−i−j 0 0
0 p1i 0
0 0 p21j


 and X =




0 0 0
0 A ptB1

0 B1 B2


. Finally, we use PU =

(
tU−1 0

0 U

)
, where U ∈

SL(n,Z).

Proof. See Andrianov-Zhuravlev [2].

We need the following lemma proved by Zhuravlev [11]

Lemma 5. Left Γ̃0(4)-coset decomposition of Γ̃0(4)K̃sΓ̃0(4) is given
by

Γ̃0(4)K̃sΓ̃0(4) =
∐

i,j

∐

A,B1,B2,U

Γ̃0(4)M̃i,j(A,B1, B2, U) ,

where the notations and the summations are given as follows. The
summations with respect to i, j, A, B1, B2, and U are taken over
the same set mentioned in lemma 4. There exists a regular matrix A1

with the property that tV AV ≡
(
A1 0
0 0

)
(mod p) for some unimodular

matrix V . We denote by γ the rank of A1 over Z/pZ. (Note γ = i− s
by assumption of A). We put εp = 1 or εp =

√
−1 for p ≡ 1 (mod 4)

or p ≡ 3 (mod 4), respectively. We put κ(A) = 1 or εp
−γ
(

(−1)γ detA1

p

)

for γ = 0 or γ > 0, respectively. Finally, we put M̃i,j(A,B1, B2, U) =
(Mi,j(A,B1, B2)PU , κ(A)p(i+2j−n)/2), where Mi,j(A,B1, B2) and PU
are the same notations as in lemma 4.

Proof. See Zhuravlev [11], [12].
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We put F (τ, z) =
∑

N,r

A(N, r)e(tr(Nτ−1

2
(4N−rtr)iY )+trz) ∈ J+

k ,

and put σ(F ) =
∑

T≥0

C(T ) e(tr(Tτ)). Then, by definition, we get

A(N, r) = C(−4N + rtr).

We have the following two lemmas.

Lemma 6. We set

σ(F )|k−1/2,ψk−1 T̃s(p
2) =

∑

T≥0

C(T ; s)e(tr(Tτ)),

then

C(T ; s) =
∑

Mv

p(n−i−2j)(2k−1)/2C(p−2DvT
tDv)

× e(p−2tr(T tDvBv))κ(Mv)
−2k+1ψ(pi)k−1,

where C(∗) = 0 unless ∗ is half integral matrix. In the above summa-
tion, Mv runs over a complete set of representatives of left Γ0(4)-coset

of Γ0(4)KsΓ0(4), and we set Mv =

(
Av Bv
0 Dv

)
(see lemma 5) .

Proof. This lemma is proved by straightforward calculation.

Lemma 7. We put

(F |kTs(p2))(τ, z) =
∑

4N−rtr≤0

A(N, r; s)e(tr(Nτ − 1

2
(4N − rtr)iY ) +t rz),

then the Fourier coefficients A(N, r; s) are written by

A(N, r; s) = p2kn
∑

λ∈(Z/pZ)n

∑

Mv

p−k(i+2j)A(Nv(λ), rv(λ))

× e(tr(Nv(λ)BvD
−1
v )),

where

Nv(λ) =
1

p2
Dv(N − 1

4
rtr +

1

4
(r − 2λ)t(r − 2λ)) tDv ,

rv(λ) =
1

p
Dv(r − 2λ).
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and we regard A(Nv(λ), rv(λ)) = 0 if Nv(λ) is not half integral or rv(λ)
is not an integer vector. In the above summation, Mv runs over a com-
plete set of representatives of left Sp(n,Z)-coset of Sp(n,Z)KsSp(n,Z),

and we set Mv =

(
Av Bv
0 Dv

)
(see lemma 4).

Proof. This is proved by straightforward calculation, and details are
omited here.

By direct calculation, we get the following identities

A(Nv(λ), rv(λ)) = C(p−2Dv(−4N + rtr)tDv)

and

e(tr(Nv(λ)BvD
−1
v )) = e

(
− 1

p2
tr((−N +

1

4
rtr)tDvBv)

)

×e
(

1

4p2
t(r − 2λ)tDvBv(r − 2λ)

)
.

So, we get an equality

A(N, r; s) = p2kn
∑

v

p−k(i+2j)C(p−2Dv(−4N + rtr)tDv)

× e

(
− 1

p2
tr((−N +

1

4
rtr)tDvBv)

)

×
∑

λ∈(Z/pZ)n

e

(
1

4p2
t(r − 2λ)tDvBv(r − 2λ)

)
.

We calculate the second sum of right hand side of the above equal-
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ity. Here we replace Bv by −Bv, then

∑

λ∈(Z/pZ)n

e(− 1

4p2
t(r − 2λ)

t
DvBv(r − 2λ))

= pj
∑

λ′∈(Z/pZ)i

e

(
−1

p
tλ

′

Aλ
′

)

= pi+j−γ(Mv)(εp
√
p)γ(Mv)

(
det (−A1)

p

)

= pi+j−
1

2
γ(Mv)εγ(Mv)

p

(
(−1)γ(Mv) det A1

p

)

= p(s+i+2j)/2κ(Mv)
−2k+1ε2(k−1)γ(Mv)

p

= p(s+i+2j)/2

(−1

p

)−s(k−1)

κ(Mv)
−2k+1ψ(pi)k−1.

In the above calculation, we used a relation γ(Mv) = s− i.
Hence, we get the following identity

ψ(p)s(k−1)p−2kn−s/2A(N, r; s) = p−n(2k−1)/2 C(−4N + rtr; s).

This completes the proof of Theorem 2.
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