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Abstract We studied the behavior of the continuous rolling
motion (CRM) of a disk placed on a vibrating plate ob-
served in the experiment using numerical simulations. Nu-
merical simulations show that a rolling disk on a vibrating
plate abruptly stops in case of pure rolling without slipping,
whereas CRM occurs in the case of slipping. CRM occurs in
two frequency bands separated by a gap. We use numerical
simulations to determine the gap and the frequency domains
for different values of the coefficient of sliding friction. The
characteristics of rolling motion depend on the coefficient of
slip friction and frequency of vibration.

Keywords Euler’s disk · vibrating plate · continuous
rolling motion · numerical simulation
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1 Introduction

A circular disk spinning on a rough surface is commonly
observed in nature. It has been studied for centuries and still
are attracting attention in recent years. If a disk is spun on
a table, it keeps spinning, and then its height decreases and
abruptly stop. This motion is accompanied by a rising noise
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before stopping. This phenomenon is explained by the ”Eu-
ler’s disk”, an excellent scientific toy consisting of a heavy
metal disk on a slightly concave mirror[1].

Following Moffatt’s discussion [2] of the abrupt halting
of Euler’s disk, interest increased in the finite-time singular-
ity of a rolling disk, and a scientific discussion on the respon-
sible dissipation mechanism began. A dissipation mecha-
nism for a rolling friction was investigated in experimentally
and theoretically. As the experimental results, trajectory of
motion, the inclination angle and precession rate of the disk
was measured using a high-speed video camera [3], laser
beam [4], and photo-transistor [5]. The theoretical and nu-
merical results was shown the influence of sliding, rolling,
and pivoting dissipation [6–13].

On the other hand, puzzling phenomena are observed
among harmonically vibrated bodies such as bouncing dimers
[14] and bouncing dumbbells with chirality [15]. So disks
are expected to gain energy from vibrating plate and con-
tinue to roll when they are placed on the plate. Does that
really happen?

In this paper, we show the experimental and numerical
results of motion of a rolling disk on a vibrating plate. As
the experimental results, we observed the behavior of the
continuous rolling motion (CRM) of a disk with appropriate
values of frequency and amplitude of the plate. In order to
reproduce the experimental results by simulation, the equa-
tions of motion of the disk on a vibrating plate were con-
structed. As the numerical results, continuous rolling motion
of the disk does not occur under no-slip condition, however,
its motion occurs under appropriate conditions with slip-
ping.

It is very difficult to show experimentally that slipping
actually occurs although the simulation shows that it is im-
portant that there is a moderate slip between the disk and
plate. However, the issue is beyond the scope of this paper,
and hence leave it for the future research. The aim of this
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paper is simply to report the CRM in experiments and nu-
merical simulations.

The paper is organized as follows. The experimental setup
and results are shown in Sec. 2. The equations of a rolling
disk on a vibrating plate are given in Sec. 3, and its numer-
ical simulation results are shown in Sec. 4. Finally, conclu-
sions and discussion of the results are given in Sec.5.

2 Experiment

A sketch of the setup is illustrated in Fig. 1. The plate is
vibrated using an electromagnetic shaker (512 Series Vibra-
tion Generator; EMIC Co., Tokyo, Japan) shown in Fig. 1
(a). This shaker was driven by a sinusoidal waveform gener-
ator (DF1906, NF Co.) shown in Fig. 1 (b). The oscillation
frequency fr and amplitude Am of plate oscillation are in-
dependent parameters which are changed by the power am-
plifier (371-A, EMIC Co.) in Fig. 1 (c). An acrylic cylinder
shown in Fig. 1 (d) was attached to (a) and a disk was turned
in it. The height and the diameter of the cylinder are 53 mm
and 80 mm respectively. Fig. 1 (e) is an charge amplifier
(505-CBP, EMIC Co.) to which an accelerometer connected.

Fig. 1 Experimental setup (a) Electromagnetic shaker. (b) Waveform
generator. (c) Power amplifier. (d) Acrylic cylinder. (e) Charge ampli-
fier

The images of motion are recorded with high-speed video
cameras at a frame rate of 240 fps.

Fig. 2 (a) Photograph of the experimental setup (side view). (b)
Schematic representation of the metal disk and vibrating plate where l
is the radius and h is the height.

The experiments used a 25-mm-diameter, 4.95-mm-thick
metal disk. Figure 2 shows a photo and a sketch of a cylin-
drical disk rolling on the vibrated plate.

The scientific toy “Euler’s Disk” rolls on its rim for up
to about 90 seconds before coming abruptly to rest. On the
other hand, the rolling metal disk which is used in our ex-
periment stops within 10 s when the acrylic plate does not
vibrate. However, with appropriate values of frequency and
amplitude, the CRM continued for 1 min or more.

The experiment was performed with the amplitude Am
fixed and the frequency fr changed by 1 Hz. The ampli-
tude was changed to 0.15 mm 0.25 mm 0.375 mm and 0.5
mm. The value of the dimensionless oscillation magnitude
Γ = 4π2Am f 2

r /g (where g is gravitational constant) is more
than unity over 32 Hz, 26 Hz and 23 Hz at the amplitude
Am = 0.25 mm, 0.375 mm and 0.5 mm respectively. At such
high frequencies (Γ > 1), moments occur when the disc and
plate are not in contact. When the disk moves away from the
plate or rolls, the analysis of the motion becomes so compli-
cated that we will not consider the phenomenon at such high
frequencies here.

CRM was observed at frequencies from 13 to 15 Hz
and 21 to 27 Hz at the amplitude Am = 0.25 mm. The fre-
quency was varied using 1 Hz increments with same ampli-
tude. CRM appears to occur in these two frequency ranges,
whereas no CRM occurs from 16 to 20 Hz. CRM also ap-
pears in the two frequency ranges when Am = 0.375 mm
and 0.5 mm. However, CRM does not occur when Am =

0.15 mm. Table 1 shows the values of the frequency of two
ranges when Am = 0.25 mm, 0.375 mm and 0.5 mm:

Table 1 The values of the frequency of two ranges.

Amplitude (mm) frequency (Hz) frequency (Hz)
0.25 13∼15 21∼27
0.375 11∼15 19∼25
0.5 10∼14 18∼22

Figures 3 (a) and (b) show a series of snapshots of the
CRM with a time interval of 5 s and 1/120 s respectively.
The amplitude Am is 0.375 mm and the frequency is 19 Hz.

3 Rolling disk model on a Vibrating Plate

3.1 Kinematics

Let’s consider the mathematical model of CRM. As shown
in Fig. 4 (a), the absolute coordinate frame (OOO,WWW i=1,2,3) is
fixed to the table and the coordinate frame (OOO′,EEE i=1,2,3) is
fixed to the vibrating plate. We consider a disk of radius l
and height h. The center of mass is denoted as G and the
contact point between the disk and the plate is denoted as
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Fig. 3 (a) Snapshots of CRM separated by 5 s. The disk is rotated by
hand. The time when the disc seems to be separated from the hand is
set to 0 s. (b) Snapshots of CRM from 6.96 s separated by 1/120 s.

P. The tangent to the circle delimiting the disk’s bottom sur-
face at the point P is denoted as S. We introduce the frame
(OOO′,EEE ′

i=1,2,3) such that the vector EEE ′
1 is parallel to the line S.

This frame is obtained by rotating the frame EEE i through the
angle α about EEE3 as follows.

EEE ′
1 = cosαEEE1 + sinαEEE2

EEE ′
2 = −sinαEEE1 + cosαEEE2, EEE ′

3 = EEE3.

Furthermore, as shown in Fig. 4 (b), we introduce the frame
with the unit vectors eee′i which is obtained by rotating frame
EEE ′

i through the angle β about EEE ′
1 as follows.

eee′2 = cosβEEE ′
2 + sinβEEE ′

3,

eee′3 = −sinβEEE ′
2 + cosβEEE ′

3, eee′1 = EEE ′
1.

The unit vectors eeei are along the principal axes of the disk
and are obtained by rotating the unit vectors eee′i through the
angle γ about eee′2 = eee2 as follows.

eee1 = cosγeee′1 − sinγeee′3,

eee3 = sinγeee′1 + cosγeee′3, eee2 = eee′2.

The disk has mass m, and the principal moments of iner-
tia with respect to the center of mass G are I1 = I3 = ml2k1

and I2 = ml2k2, where k1 ≡ 1
4 +

h2

12l2 and k2 ≡ 1
2 are dimen-

sionless parameters. The gravitational acceleration g points
in the negative EEE3 direction.

The position vectors rrrt , rrr, rrr0, rrrg and RRRg are shown in
Fig. 5. The vector rrrt has the following components:

rrrt = xEEE ′
1 + yEEE ′

2 = (x,y,0)EEE ′

= (xcosα − ysinα,xsinα + ycosα,0)EEE .

In the following, we use subscripts such as EEE ′ and EEE to iden-
tify the frame in which the components are represented.

(a)

(b)

Fig. 4 (a) Definition of the coordinate frames. WWW i is the absolute coor-
dinate frame. EEE i is the coordinate frame fixed to the vibrating plate and
EEE ′

i is obtained by rotating the frame EEE i through the angle α about EEE3.
eeei is principal axis of inertia of the disk and eee′i is obtained by rotating
frame eeei through the angle γ about eee2. (b) eee′i is also obtained by rotating
frame EEE ′

i through the angle β about EEE ′
1

The vectors rrr, rrr0, and RRRg = rrr0+rrrt −rrr have the following
components:

rrr = −lεeee′2 − leee′3 =−l(0,ε,1)eee′ =−l(0,ρ2,ρ3)EEE ′ ,

rrr0 = (0,0, lr0)EEE , RRRg = (x,y+ lρ2, l(ρ3 + r0))EEE ′ ,

where

ε ≡ h
2l
, ρ2 ≡ ε cosβ − sinβ , ρ3 ≡ ε sinβ + cosβ .

The plate is oriented horizontally and vibrated vertically with
r0 =Am sin(2π frt)/l, where Am is the amplitude and fr is the
oscillation frequency of the plate oscillation.

The components of angular velocity with respect to frame
eee′ are as follows:

ωωω = γ̇eee′2 + β̇eee′1 + α̇EEE3 = (ω1,ω2,ω3)eee′ ,

= (β̇ , γ̇ + α̇ sinβ , α̇ cosβ )eee′ . (1)

The overhead dot symbol denotes differentiation with re-
spect to time.

The inertia tensor is diagonal when expressed in the body
fixed frame, or in a corotating frame eee′. The angular moment
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Fig. 5 The position vectors rrrt , rrr, rrrg, rrr0 and RRRg. rrrt is the position vector
from O′ to the point of contact P, rrr is the position vector from G to the
point of contact P, rrrg is the position vector from O’ to G, rrr0 is the
position vector from O to O’ and RRRg is the position vector from O to G.

LLL is expressed in frame eee′ such that LLL=ml2(k1ω1,k2ω2,k1ω3)eee′

because k1 = k3.
The time derivative of vector AAA = aieeei = a′ieee

′
i = A′

iEEE
′
i is

d
dt AAA = ȧieeei +ωωω ×AAA, hence, the components are
d
dt

AAA = (ȧ′1 +(tanβa′3 −a′2)ω3, ȧ′2 +ω3a′1 −ω1a′3,

ȧ′3 − tanβω3a′1 +ω1a′2)eee′ (2)

= (Ȧ′
1 − α̇A′

2, Ȧ
′
2 + α̇A′

1, Ȧ
′
3)EEE ′ . (3)

The slip velocity of the contact point P is defined as vvvp ≡
d
dt rrrt − ṙieeei and is denoted as follows:

vvvp = l(Vp1,Vp2,0)EEE ′ = (ẋ− α̇y− lγ̇, ẏ+ α̇x,0)EEE ′ .

The first term d
dt rrrt denotes the velocity of the contact point

P as seen by the observer on the plate fixed to frame EEE, and
the second term ṙieeei denotes the contact point P as seen by
the observer on the disk fixed to frame eee.

The time derivative of RRRg gives the velocity of the center
of mass, vvvg ≡ d

dt RRRg = l(Vg1,Vg2,Vg3)EEE ′ , as follows:

vvvg =
d
dt

rrrt − (ṙieeei +ωωω × rrr)+
d
dt

rrr0

= vvvp −ωωω × rrr+
d
dt

rrr0 (4)

= l(Vp1 +ω2 − εω3,Vp2 −ω1ρ3,ω1ρ2 + ṙ0)EEE ′ . (5)

The time derivative of the angular moment LLL is obtained
from Eq. (2):
d
dt

LLL = ml2(k1ω̇1 + k1 tanβω2
3 − k2ω2ω3,k2ω̇2,

k1ω̇3 − k1 tanβω1ω3 + k2ω1ω2)eee′ . (6)

3.2 Equations of motion

The equations of motion can be expressed as
d
dt

LLL = rrr× fff , (7)

m
d
dt

vvvg = fff −mgEEE3, (8)

where fff and MMM f are the reaction force to the plate and the
moment of rolling friction, respectively. Because any body
is deformable, the actual contact between the body and the
horizontal plane will involve a contact region rather than a
single point. The moment MMM f is intended to incorporate the
effects of a finite region of contact.

According to Leine [12], who studied the abrupt halt-
ing of the rolling disk, the moment of rolling friction MMM f
contains classical rolling friction, contour friction, pivoting
friction, and friction due to viscous air drag. Contour friction
is a resisting moment against the movement of the contact
point over the rim of the disk [10,12]. Leine concluded that
contour friction is the predominant contributor to the friction
causing the abrupt halt.

The energy dissipation due to the contour friction Ediss
is considered to be proportional to the product of the normal
force ml fN which is assumed to be almost constant and the
distance D = l|γ| at which the contact point moves

Ediss = −µcml fND, (9)

so that the rate of dissipation of energy is
d
dt

Ediss =−µcml2 fN γ̇sgn(γ̇), (10)

where µc is the friction coefficient of contour friction. On
the other hand, the rate of dissipation of energy is calculated
by
d
dt

Ediss = ωωω ·MMM f . (11)

Comparing Eq. (10) and Eq. (11) leads to

MMM f = µcml2 fNsgn(γ̇)(0,−1, tanβ )eee′ .

As for rolling without slipping, the vanishing slip veloc-
ity vvvp = 0 leads to vvvg = rrr×ωωω + d

dt rrr from Eq. (4). By using
Eq. (8), the reaction force is obtained

fff = m
(

d
dt
(rrr×ωωω)+(g+ lr̈0)EEE3

)
. (12)

Substituting Eq. (12) into Eq. (7) and using Eq. (2) gives

k′′1 ω̇1 +g′ρ2 = (k′2 + ε tanβ )ω2ω3 − (k′1 tanβ + ε)ω2
3 ,

k′2ω̇2 − εω̇3 = −(1+ ε tanβ )ω1ω3 − fN µcsgn(γ̇),
k′1ω̇3 − εω̇2 = (k′1 tanβ + ε)ω1ω3 − k2ω1ω2

+ fN µc tanβ sgn(γ̇),

where

k′′1 ≡ k′1 +1, k′1 ≡ k1 + ε2, k′2 ≡ k2 +1, g′ ≡ r̈0 +
g
l
.

Using Eq. (8) and Eq. (5), we obtain the normal force of

fN ≡ fff N ·EEE3

ml
= ω̇1ρ2 −ω2

1 ρ3 +g′.

As for rolling with slipping, the force fff is given by the
sum of the normal contact force fff N and the sliding friction
force fff s. We adopt the Coulomb friction force given by

fff s =−mlµs fN(V̂p1,V̂p2,0)EEE ′ , (13)
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where

V̂p1 ≡
Vp1√

VVV 2
p + ε2

c

,V̂p2 ≡
Vp2√

VVV 2
p + ε2

c

,

µs is the coefficient of sliding friction, and εc is a suffi-
ciently small parameter to make this force vanish at VVV p = 0.
According to the Coulomb-Contensou friction model, this
small parameter can be attributed to a non-zero pivot angu-
lar velocity ω3 while the disk is spinning.[16–19]

Substitution of Eq. (13) and Eq. (6) into Eq. (7) gives the
following equations:

k1ω̇1 = −k1 tanβω2
3 + k2ω2ω3 − fN(µsρ3V̂p2 +ρ2),

k2ω̇2 = fN(µsV̂p1 −µcsgn(γ̇)),
k1ω̇3 = k1 tanβω1ω3 − k2ω1ω2

− fN(εµsV̂p1 −µc tanβ sgn(γ̇)).

Using Eq. (3) and substituting Eq. (5) and Eq. (13) into
Eq. (8) gives

V̇p1 + ω̇2 − εω3 =
ω3

cosβ
(Vp2 −ω1ρ3)− fN µsV̂p1,

V̇p2 − ω̇1ρ3 = ω2
1 ρ2 −

ω3

cosβ
(Vp1 +ω2 − εω3)− fN µsV̂p2.

4 Simulation

We simulated the disk’s motion on the vibrating plate using
the equations of motion obtained above. For the numerical
simulations, the NDsolve command in Mathematica (Wol-
fram Research Inc.) is used.

If the disk is pure rolling without slipping (VVV p = 0) and
the plate is not vibrating, there is a motion that rotates with-
out moving the center of mass. This type of motion is called
stationary rolling motion. being characterized by

VVV g = 0, ω2 = εω3, ω2
3 =

g(sinβ0 − ε cosβ0)

l(k1 tanβ0 − εk2)
, (14)

where the angle β0 is given by an initial constant value. If
this motion is perturbed, the angle β oscillates around an
equilibrium position β0. This oscillation is called nutation.
According to Leine [12], the nutation frequency fn around
stationary rolling motion with angle β is given by

fn =
1

2π

√
g(3k1 tan2 β +1)cosβ

lk1(k1 +1)
.

We find that CRM occurs when the vibration frequency of
the plate approaches the nutation frequency.

We used the following parameter values and initial con-
ditions for the simulations:

g = 9810 mm/sec2, Am = 0.25 mm,0.375 mm,0.5 mm,

l = 12.5 mm, h = 4.95 mm,

α(0) = 0◦,β (0) = 60◦,γ(0) = 0◦,

ωωω(0) = (0,−8.1,−41.1)eee′ rad/s,

where the values of angular velocity correspond to the sta-
tionary rolling motion for the angle β (0) = 60◦ which are
obtained from Eq. (14). The contour friction coefficient was
set to µc = 0.0013, which is obtained by comparing the time
taken to halt as determined via the numerical simulation
with that observed experimentally under the no vibration
conditions. As the goal of the present work is to discuss con-
tinuous rolling in qualitative terms, an accurate value of the
coefficient of contour friction is not necessary.

4.1 no-slip case

We studied the disk’s motion without slipping at the ampli-
tude Am = 0.25 mm.

Figure 6 shows the angle β as a function of time for
various vibrating frequencies. An abrupt halt was observed,
similar to that which occurs with no vibration, up to the fre-
quency fr = 36 Hz. The halt occurred, although large beats
occurred at the frequency fr = 11 Hz, which is near the nu-
tation frequency for the angle β = 60◦. The same large beats
and halt appeared at the frequency fr = 24 Hz near twice the
nutation frequency.

Above the frequency fr = 32 Hz (Γ > 1) for the am-
plitude Am = 0.25 mm, the normal reaction force became
negative in the last period of rolling which means that mo-
ments occur when the disc and plate are not in contact , as
can be checked through simulation. Thus the simulations at
the frequencies more than 32 Hz (Γ > 1) is not considered
in the following.

We studied cases for various values of the coefficient
of contour friction: µc = 0.1,0.01.0.0001 and the ampli-
tude Am = 0.375 mm, 0.5 mm. The results thus obtained
were similar to those for µc = 0.0013, and CRM was not
observed.

4.2 slipping case

We simulated the disk in stationary rolling motion with slip-
ping on a vibrating plate.

For a small coefficient of sliding friction that was less
than µmin

s and for a large one that was more than µmax
s , CRM

did not occur in the frequency range from 8 to 35 Hz. But
CRM occurred for the value of coefficient of sliding friction
from µmin

s to µmax
s . CRM does not occur when it is either

slippery or not slippery at all; in other words, for CRM, a do-
main of appropriate values exist in the space defined by the
vibrating frequency and the coefficient of sliding friction.
Table 2 shows the value of µmin

s and µmax
s at the amplitude

Am = 0.25 mm, 0.375 mm and 0.5 mm.
The domains where CRM occurs are shown in Fig. 7 (a),

(b) and (c) at the amplitude Am = 0.25 mm, 0.375 mm and
0.5 mm respectively. The plotted points indicate where the
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Fig. 6 Angle β in the simulation for rolling without slipping.

Table 2 The value of µmin
s and µmax

s .

Am(mm) 0.25 0.375 0.5
µmin

s 0.0195 0.00859 0.00892
µmax

s 0.202 0.233 0.233

disk continues rotating for 120 s. The lines show the values
obtained in the experiment (Table 1). The simulation reveals
two subdomains separated by a frequency gap. The low-
frequency domain extends to nearly the nutation frequency
and the high-frequency domain extends to nearly twice the
value of the nutation frequency. Fig. 7 (a), (b) and (c) indi-
cate that the range of frequencies obtained in the experiment
almost coincides with the domain shown in the simulation
even though the simulation only includes the contour fric-
tion and sliding friction.

Figure 8 shows the typical behavior of the angle β as a
function of time where the amplitude Am is 0.375 mm and
the vibrating frequency fr is 25 Hz. In the first period up
to about 2.5 seconds, the angle β behaves like the angle in
stationary rolling motion in the no-slip case, and decreases
gradually. The motion of the disk shifts to CRM after about
3 seconds, and the amplitude of the nutation oscillation is
almost constant; the nutation fluctuation range of the angle
β is about 10◦ ∼ 29◦.

Figure 9 shows the behavior of the angle β over a short
time interval t = 6.02 ∼ 6.24 seconds in Fig. 8. The images
in the Fig. 9 are extracted every four frames (0.0167 sec-
onds) from an experiment movie under the same conditions
as the simulation. Grid lines are drawn at the same time in-
tervals. It is found that the period of the nutation oscillation
in the simulation reproduces the period in the experiment.

Figure 10, 11 and 12 show the angle β as a function of
time for various vibrating frequencies at the amplitude Am =

0.25 mm, 0.375 mm and 0.5 mm respectively. We used a co-
efficient of sliding friction µs = 0.11, 0.09, and 0.07 at the
amplitude Am = 0.25 mm, 0.375 mm and 0.5 mm respec-
tively. These values were determined based on a large over-
lap between the ranges in the experiment and the domains in
the simulation in Fig. 7. The behaviors of the angle β are not
CRM at the frequency 31 Hz in the amplitude Am = 0.375
mm and at the frequency 28 Hz in the amplitude Am = 0.5
mm, because the normal force becomes negative from the
time t ∼ 5 seconds, as can be checked through simulation.

Table 3 shows the nutation fluctuation range of the angle
β at the amplitudes of the plate (Am = 0.25,0.375,0.5 mm)
and at frequency 11,14 Hz (low-frequency domain) and 22
Hz, 25 Hz (high-frequency domain). The width of the range
is approximately equal even if the amplitude changes at each
frequency. In both the low-frequency domain and the high-
frequency domain, the widths of the range become narrower
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Fig. 7 The domain of CRM as a function of frequency fr and coeffi-
cient of slip friction µs. (a) Amplitude Am = 0.25 mm. (b) Amplitude
Am = 0.375 mm. (c) Amplitude Am = 0.5 mm.

and the minimum values of the angle become small as the
frequency increases.

Table 3 The nutation fluctuation range of the angle β .

Am (mm) 11 Hz 14 Hz 22 Hz 25 Hz
0.25 17◦ ∼ 37◦ 6◦ ∼ 24◦ 15◦ ∼ 37◦ 9◦ ∼ 29◦

0.375 16◦ ∼ 39◦ 4◦ ∼ 26◦ 16◦ ∼ 37◦ 6◦ ∼ 30◦

0.5 16◦ ∼ 41◦ 4◦ ∼ 27◦ 18◦ ∼ 36◦ 10◦ ∼ 29◦

0 1 2 3 4 5 6 7
t(s)0

10

20

30

40

50
90-β (° )

fr= 25. Hz

Fig. 8 The typical behavior of the angle β at the amplitude Am = 0.375
mm and at the vibrating frequency fr = 25 Hz.

Fig. 9 The angular behavior of angle β over a short time interval t =
6.02 ∼ 6.24 seconds in Fig. 8.

5 Conclusion and discussion

To summarize our experiments, when vertical vibrations are
applied to a rolling disk, CRM occurs with appropriate val-
ues of frequency and amplitude. In the numerical simula-
tion, the CRM of the disk does not occur on the vibrating
plate under no-slip conditions; however, CRM does occur
under appropriate conditions with slipping. In the experi-
ment, CRM occurs in two frequency ranges separated by a
gap, and we use numerical simulations to confirm the gap
and the frequency domains for different values of the coeffi-
cient of sliding friction.

It is found out that slipping is important on the result of
the simulation. However, we have not ascertained whether
the disk actually slip. Thus, it is a future subject to investi-
gate slipping using some direct method. Slipping seems to
synchronize the oscillation of the angle β and that of the
plate , which leads to the CRM of the disk. It is also a future
subject to clear how this synchronization happens and why
the two frequency bands appear.
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Fig. 10 Angle β in the simulation with slipping at the amplitude Am = 0.25 mm. The coefficient of slip friction µs = 0.11.
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Fig. 11 Angle β in the simulation with slipping at the amplitude Am = 0.375 mm. The coefficient of slip friction µs = 0.09.
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Fig. 12 Angle β in the simulation with slipping at the amplitude Am = 0.5 mm. The coefficient of slip friction µs = 0.07.
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