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Spin Reversal of a Rattleback with Viscous Friction
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Abstract—An effective equation of motion of a rattleback is obtained from the basic equation
of motion with viscous friction depending on slip velocity. This effective equation of motion
is used to estimate the number of spin reversals and the rattleback’s shape that causes the
maximum number of spin reversals. These estimates are compared with numerical simulations
based on the basic equation of motion.
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1. INTRODUCTION

A rattleback, also known as a celt or wobblestone, is a type of mechanical top with the curious
property of spin asymmetry. Nowadays, there are different varieties of rattlebacks. Figure 1 shows
a Russian rattleback toy called stubborn tortoise. When the rattleback is spun in the clockwise
direction which the tortoise has been turned to, it continues to spin clockwise until it slows to a stop.
However, when the rattleback is spun in the anticlockwise direction, a self-induced oscillation occurs,
and the spin slows down and eventually its direction is reversed. There is an inertial asymmetry,
because the tortoise’s center of mass is shifted from the principal axes of the body surface ellipsoid.
This inertial asymmetry is responsible for spin reversal.

Fig. 1. A Russian rattleback toy called stubborn tortoise.

Many analyses and simulations have attempted to explain the dynamics of rattlebacks during
the last century.

The first scientific paper on rattlebacks appeared in 1898 (Walker [1]). Assuming dissipation-free
rolling without slipping, he obtained linearized equations of motion for contact point coordinate
variables and spin variables. He analyzed the instability of the spin magnitude and direction by
studying a characteristic equation and showed the relationship between the direction of spin and
the oscillation.
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In 1983, Pascal [2], using the same assumptions as Walker [1], derived effective equations of
motion for the slowly varying mode by using the method of averaging and clarified a rattleback’s
reversal mechanism.

During the same period, Markeev [3] obtained results similar to that of Pascal [2]. He derived
two conservation laws and provided a comprehensible explanation of a rattleback’s reversal. Their
results were extended to second-order averaging by Blackowiak, Rand and Kaplan [4].

Moffatt and Tokieda [5] presented a physically transparent derivation of the effective equations
of motion similar to Markeev’s derivation.

In 1986, Bondi [6] extended Walker’s [1] results to understand how spin evolves for a wide range
of geometric and inertial parameters of the body.

Recently, strange attractors and new effects in rattleback dynamics are studied by Borisov
et.al. [7–9].

For a no-slip dissipation-free case, numerical simulations [10–12] showed that infinite spin
reversals occur. On the other hand, real rattleback has finite spin reversals because of energy
loss by slip friction. Thus, it is important to analyze the dynamics of rattlebacks with slip friction.

Karapetian [13] discussed the stability of rotation of a heavy asymmetric rigid body (rattleback)
on a horizontal plane with viscous friction, but did not mention the number of spin reversals
discussed in this paper.

Garcia and Hubbard [12] discussed the limitations of a no-slip case and analyzed the effects
of dissipation. They derived augmented equations of motion incorporating lumped models for
aerodynamic effects, spinning torque and slipping torque due to Coulomb friction force of slip
velocity. In reality, the contact with the horizontal plane is not a point but an area, and relative
angular motion between the surfaces causes spinning torque and slipping torque. These equations
were solved numerically. Because these equations were too complicated, they presented a simplified
model of spin.

The spin model derived by considering energy in the spin, oscillation, and dissipation was
successful in explaining spin dynamics, this model was not derived from equations of motion.
Thus, the effect of the slip velocity is not clear. Furthermore, they did not discuss the number of
spin reversals and its relationship to the rattleback’s shape.

The observation of the actual behavior of rattlebacks leads to three questions.
First, for the no-slip case, if the initial spin value n0 is small, the rattle oscillation becomes large

and spin reversal occurs in theory. In contrast, for the slip case, if n0 is small, the rattle oscillation
does not increase, and spin reversal does not occur. In this case, a critical value of the initial spin
nc seems to exist, above which the spin reversal occurs. What is the value of nc?

Second, a real rattleback has a finite number of spin reversals because of energy loss due to slip
friction. When the value of the coefficient of friction is known, how many times does the rattleback
reverse and how does the number of spin reversals depend on the coefficient of friction?

Third, it seems that the number of spin reversals depends on the rattleback’s shape. One
rattleback may reverse only once, whereas another may reverse as many as three times. Given that
the lower surface of the rattleback is defined by an ellipsoid x2

a2 + y2

b2
+ z2

c2
= 1, where a > b > c = 1,

if a � b, the oscillations in the x direction become large and spin reversal occurs rapidly. After one
reversal, the oscillations start in the y direction but do not become as large, and spin reversal occurs
slowly. In this situation, the number of spin reversals is small. In contrast, if a = b, the rattleback
is a disk, and spin reversals do not occur. Thus, it seems that a critical ratio of a and b gives the
maximum number of spin reversals. What is this value?

In this paper, to answer the above questions, I consider the basic equations of motion containing
sliding friction and obtain linearized equations of motion containing slip velocity. I derive the
effective equations of motion by approximating this velocity. By applying the same averaging
method as that used by Pascal [2], differential equations of slowly changing variables are obtained.
These differential equations are used to analyze the relationship among the number of spin reversals,
the coefficient of friction, and the rattleback’s shape. The spin behavior obtained from the simulation
of the effective equations of motion is compared with that obtained from the simulation of basic
equations of motion.
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2. BASIC EQUATIONS OF MOTION FOR A RATTLEBACK
WITH VISCOUS FRICTION

In this paper, a rattleback is considered to be a uniform ellipsoid of mass m with a smooth lower
surface such that a > b > c as follows:

x̃2

a2
+

ỹ2

b2
+

z̃2

c2
= 1,

where x̃, ỹ, and z̃ are the body axes of the rattleback as shown in Fig. 2. The distances of the three
axes from the center of mass are a, b, and c, respectively. The principal inertia axes are x, y, and z.
The z-axis is directed downward and coincides with the z̃-axis. The x- and y-axes are rotated by
angle δ such that

⎛
⎝x̃

ỹ

⎞
⎠ =

⎛
⎝cos δ − sin δ

sin δ cos δ

⎞
⎠

⎛
⎝x

y

⎞
⎠ ,

z̃ = z.

In this paper, it is assumed that δ is small, such as O(10−2). The vector at the contact point P ,
xp, has components x, y, and z. u is the upward unit vector at point P .

Fig. 2. Body axes x̃, ỹ, and z̃ with lengths a, b, and c, respectively, principal inertia axes x, y, z and angle δ.

When the rattleback rotates, point P is near the point (0, 0, c). When the rattleback oscillates,
the values of x, y are |x| < a and |y| < b, respectively, and z can be expanded by a second-order
approximation of x

a < 1 and y
b < 1 as follows:

z � c

(
1 −

{
p

2

(x

c

)2
+ q

xy

c2
+

s

2

(y

c

)2
})

,

where the parameters p, q, and s are given by

p ≡ c2

(
cos2 δ

a2
+

sin2 δ

b2

)
, (2.1)

q ≡ c2 cos δ sin δ

(
1
b2

− 1
a2

)
, (2.2)

s ≡ c2

(
sin2 δ

a2
+

cos2 δ

b2

)
. (2.3)

At the leading order, the following equations are obtained:

xp � (x, y, c), (2.4)

u �
(
−px + qy

c
,−qx + sy

c
,−1

)
. (2.5)
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Assuming that δ is small, the principal moments of inertia I10, I20, and I30 are approximated as
follows:

I10 � mI1, I20 � mI2, I30 � mI3,

where

I1 ≡ b2 + c2

5c2
, I2 ≡ a2 + c2

5c2
, I3 ≡ a2 + b2

5c2
.

In the following equations, the basic equations of motion for the angular momentum L and
the velocity of the center of mass vg are shown. In Section 6, numerical simulations of these basic
equations of motion are performed. The evolution of angular momentum is governed by Euler’s
equation:

d

dt
L = xp × (Rf + Ru) , (2.6)

where Ru is the normal reaction at P , and Rf is the slip friction force at P . The dynamics of the
center of mass is governed by Newton’s equation for the center of mass velocity vg:

m
d

dt
vg = (R − mg)u + Rf . (2.7)

The slip velocity, vp, is related to velocities v0 ≡ xp × ω and vg as follows:

vp = vg − v0. (2.8)

Because f , vp, and d
dtvp only have components in the horizontal direction, using Eqs. (2.7) and (2.8),

the normal reaction R is given by

R = mg + m

(
d

dt
v0

)
· u. (2.9)

The Coulomb law is often used to define sliding friction as follows:

f = −μc
vp

|vp|
,

where vp is the slip velocity and μc is the coefficient of Coulomb friction. It is difficult to analyze the
equations of motion because this definition of the Coulomb friction is undefined at vp = 0. Thus,
in this paper, viscous friction is adopted to perform a first examination of spin reversal. Viscous
friction is linearly related to vp as follows:

f = −μvp (2.10)

where μ is the coefficient of viscous friction with unit s/cm. It is found that viscous friction is
well defined at vp = 0. The angular momentum L has components in the principal inertia axes as
follows

L = (I10ω1, I20ω2, I30ω3) ,

where ωi are the components of the angular velocity ω of the rattleback. ω is given by the equation
d
dtu = 0. In general, because the unit vectors of the principal inertia axes ei have time dependence,
the time derivative of the vector A is given by

d

dt
A =

∂

∂t
A + (ω × A),

where ∂
∂tA ≡ ( d

dtAi)ei. Then

ω =
∂

∂t
u × u + nu, (2.11)

where n ≡ ω · u. The dynamical variables of these basic equations of motion are the components
of the angular velocity ωi and the slip velocity vpi.
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The equations of motion are obtained by dividing both sides of Eqs. (2.6) and (2.7) by g and
rescaling of the variables as follows:

t̃ =
√

gt, L̃ =
L
√

g
, ω̃ =

ω
√

g
,

R̃ =
R

g
, ṽp =

vp√
g
, μ̃ =

√
gμ.

In addition, the length of c is assumed to be unit length, i.e., c = 1cm thus c does not appear in
equations in the remaining sections.

When a rattleback is turned slightly by hand such that the initial value of rotation is � 2π rad/s,
spin reversal occurs. Because gravitational constant takes the value g � 980 cm/s2, the spin value
is ñ � 0.201. As spin reversal occurs at this spin value or lower spin values, the order of ñ such as
ñ = n√

g � O(10−2) may be assumed. This assumption is the same as that for the neighborhood of

the position of stable equilibrium discussed by Pascal[2]. The value of the order of ñ � O(10−2) is
used in the next section to approximate the equations of motion.

In the case of limiting μ to infinity, these equations of motion lead to the no-slip case, as shown
by the numerical simulation performed in Section 6. Therefore, to consider a case in which spin
reversal occurs several times, μ is assumed to be not as small as μ̃ � O(102) � 1

ñ .

In the remaining sections, the tilde symbol above the variables is omitted.

3. EFFECTIVE EQUATIONS OF MOTION

This section shows that the effective equations of motion for a rattleback are obtained by
applying the same linearization method as that of Walker [1] and Pascal [2],

The parameters c and n are set 1 and � 1
μ � O(10−2), respectively, as discussed in the previous

section.

The contact point xp has components (x, y, z), which satisfy |x|
a < 1, |y|

b < 1. The second-order
terms can be neglected. Assuming that δ � O(10−2), a � O(10), and b � O(1), Eqs. (2.1), (2.2),
and (2.3) for the parameters p, q, and s are, respectively, approximated as

p � 1
a2

, q � δ

b2
, s � 1

b2
.

These equations imply that the second-order terms of
√

px,
√

sy,
√

qx, and
√

qy can be neglected.
In addition, the order of the spin value n � O(10−2) is used, as discussed in the previous section.
The second-order terms of n, p, s, and q are also neglected.

For the orders of ẋ and ẏ, when the time derivative of x is considered, x is multiplied by the
oscillation factor. Because a rattleback, unlike a usual top, does not oscillate rapidly, x and ẋ are
assumed to have the same order. In fact, as Eqs. (3.37) and (3.38) will show, the oscillations are
almost cos(ν1,2t), and according to Eqs. (3.23) and (3.24), ν2

1 � 5a2

a2+6
and ν2

2 � 5b2

b2+6
, respectively.

When a = 10 and b = 3, as assumed in the simulation in Section 6, ν1,2 are ν2
1 � 5 and ν2

2 � 3; thus,
it is assumed that ν1,2 � O(1). Therefore, the second-order terms of O(ẋ) � O(x), and O(ẏ) � O(y),
such as psxẏ are neglected.

In this approximation, by using Eqs. (2.4), (2.5), and (2.11), ω = (ω1, ω2, ω3) has the following
components,

ω � (qẋ + sẏ,−pẋ − qẏ,−n), (3.1)

and v0 = xp × ω has components

v0 � (pẋ + qẏ − ny, qẋ + sẏ + nx, 0). (3.2)
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Because the second term of the time derivative of v0, ω × v0, is second order of n, p, q and s, d
dtv0

are as follows:
d

dt
v0 � ∂

∂t
v0

� (pẍ + qÿ − nẏ, qẍ + sÿ + nẋ, 0), (3.3)

where terms such as ṅy are neglected because ṅ is a second-order term, as will be shown in
Eq. (3.15).

In Eq. (2.9) for R, it is seen from Eqs. (2.5) and (3.3) that
(

d
dtv0

)
· u is a second-order term;

thus, R � m. Therefore, setting R = m in Eqs. (2.6) and (2.7), the following equations are obtained

d

dt
L = m(N0 + Ng + Np), (3.4)

d

dt
vg = f , (3.5)

where

N0 ≡ xp ×
d

dt
v0, Ng ≡ xp × u, Np ≡ xp ×

d

dt
vp.

These equations contain six dynamical variables: x, y, n, and the components of vp. Therefore, it
is difficult to analyze the dynamics of these variables.

Using the approximation in Eq. (3.1) for ω, and neglecting the second-order terms of n, p, q

and s, the approximation of d
dtL has components

d

dt
L � (I1(qẍ + sÿ),−I2(pẍ + qÿ),−I3ṅ). (3.6)

At the leading order, N0 has components

N01 � −(qẍ + sÿ) − nẋ,

N02 � pẍ + qÿ − nẏ, (3.7)
N03 � q(xẍ − yÿ) + sxÿ − pẍy + n(xẋ + yẏ),

where the approximation n(1 − p)xẋ � nxẋ is adopted. At the leading order, Ng has components

Ng � (−y, x, q(y2 − x2) + xy(p − s)), (3.8)

where the approximation qx − (1 − s)y � −y is adopted.
The next thing to be discussed is an approximation in which vp is expressed by x, y, and n. This

approximation is crucial for simplifying these complicated equations of motion. Equations (2.8),
(2.10), and (3.5) give μvp = − d

dtv0 − d
dtvp. In addition, the numerical simulation in Section 6 shows

that d
dtv0 � d

dtvp. Thus, the following approximation is obtained:

vp � − 1
μ

d

dt
v0. (3.9)

Because the components of v0 are given by x, y, and n from Eq. (3.2), the dynamical variables
reduce to x, y, and n as will be shown in Eqs. (3.18)–(3.20). It is easily seen from Eqs. (3.3) and (3.9)
that vp3 is a second-order term. In addition, the term ω × vp is neglected in the time derivative
of vp. Thus, d

dtvp has components,

d

dt
vp � ∂

∂t
vp � (v̇p1, v̇p2, 0). (3.10)

Using Eq. (3.10), Np has components

Np � (−v̇p2, v̇p1, xv̇p2 − yv̇p1). (3.11)
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Substituting Eqs. (3.6)–(3.11) into Eq. (3.4) gives

J1(qẍ + sÿ) + nẋ + y + v̇p2 = 0, (3.12)
J2(pẍ + qÿ) − nẏ + x + v̇p1 = 0, (3.13)

where

J1 ≡ I1 + 1 =
b2 + 6

5
, J2 ≡ I2 + 1 =

a2 + 6
5

. (3.14)

For ṅ, the following equation is obtained

I3ṅ + q(xẍ − yÿ) + sxÿ − pẍy + n(xẋ + yẏ) + (q(y2 − x2) + (p − s)xy) + xv̇p2 − yv̇p1 = 0. (3.15)

Let vp1, vp2 be expressed with respect to x, y and n from Eq. (3.9). Using Eqs. (3.3) and (3.13)
and adopting approximations (1 − 1

J2
) � 1 and v̇p1

μ � O( 1
μ2 ) � 0 from Eq. (3.9), vp1 is given by

vp1 � − 1
μ

(pẍ + qÿ − nẏ),

= − 1
μ

(
1
J2

(nẏ − x − ˙vp1) − nẏ

)
,

� 1
μ

(
nẏ +

x

J2

)
. (3.16)

Similarly, vp2 is given by

vp2 � − 1
μ

(
nẋ − y

J1

)
. (3.17)

By substituting Eqs. (3.16) and (3.17) into Eqs. (3.12)–(3.15), and neglecting O(n
μ)(< O(q))

terms, such as (
J1q −

n

μ

)
ẍ � J1qẍ,

at the leading order, the following equations are obtained

J1(qẍ + sÿ) + nẋ + y +
ẏ

J1μ
= 0, (3.18)

J2(pẍ + qÿ) − nẏ + x +
ẋ

J2μ
= 0, (3.19)

I3ṅ + q(xẍ − yÿ) + sxÿ − pẍy + n(xẋ + yẏ) + (q(y2 − x2) + (p − s)xy) +
xẏ

μJ1
− yẋ

μJ2
= 0. (3.20)

From the above expressions, it is observed that the main parts are oscillations of x and y, such
as ÿ + 1

J1sy = 0 and ẍ + 1
J2px = 0. Moffatt and Tokieda [5] suggested that the terms J1qẍ, nẋ, J2qÿ

and nẏ are crucial in creating reverse oscillations. The effect of friction is included in the terms ẏ
J1μ

and ẋ
J2μ .

Furthermore, to eliminate terms depending on qẍ and qÿ, the new variables X and Y are defined
as follows: ⎛

⎝ X

Y

⎞
⎠ ≡ TJP

⎛
⎝ x

y

⎞
⎠ , (3.21)

where

J ≡

⎛
⎝

√
J2 0

0
√

J1

⎞
⎠ , P ≡

⎛
⎝ p q

q s

⎞
⎠ .
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In Eq. (3.21), the matrix T is a rotational matrix that diagonalizes the symmetric matrix
Q ≡ J−1P−1J−1, and it is defined by

T ≡

⎛
⎝ cos θ sin θ

− sin θ cos θ

⎞
⎠ .

The matrix Q is expressed as

Q =
1
Δ

⎛
⎝

s
J2

− q√
J1J2

− q√
J1J2

p
J1

⎞
⎠ .

The rotational angle θ is given by

tan 2θ = − 2q
√

J1J2

J1s − J2p
� −2

√
2

5
δab � O(10−1). (3.22)

The eigenvalues of Q, ν1 and ν2, correspond to the frequencies of X and Y , respectively, and they
are given as follows:

F ≡ TQT−1 =

⎛
⎝ ν2

1 0

0 ν2
2

⎞
⎠ .

For a � O(10) > b � O(1), by using Eqs. (2.1)–(2.3) for the parameters p, q and s, the eigenvalues
ν1 and ν2 are given as follows:

ν2
1 � 5

(
a2

a2 + 6
+ δ2 a2

6(1 − a2

b2 )

)
� 5, (3.23)

ν2
2 � 5

(
b2

b2 + 6
− δ2 a2

6(1 − a2

b2
)

)
� 5b2

b2 + 6
. (3.24)

The equations of motion with respect to X and Y are given by

(
D2 + F + DRF

)
⎛
⎝ X

Y

⎞
⎠ =

⎛
⎝ 0

0

⎞
⎠ ,

where

R ≡ TJ−1NJT−1, N ≡

⎛
⎝

1
J2μ −n

n 1
J1μ

⎞
⎠ , D ≡

⎛
⎝ d

dt 0

0 d
dt

⎞
⎠ .

The matrix R has components ai as follows:

R =

⎛
⎝ a1 a2

a3 a4

⎞
⎠ , (3.25)

where ai are defined by

a1 ≡ m1 − nk1, a2 ≡ −m2 − nk2, a3 ≡ −m3 + nk3, a4 ≡ m4 + nk4. (3.26)

In these equations, ki are given by

k1 ≡ −ν2
1 sin θ cos θ(f − f−1) � a2δ � O(1), (3.27)

k2 ≡ ν2
2(f sin2 θ + f−1 cos2 θ) � 5b√

2a
� O(1), (3.28)
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k3 ≡ ν2
1(f cos2 θ + f−1 sin2 θ) � 5a√

2b
� O(10), (3.29)

k4 ≡ −ν2
2 sin θ cos θ(f − f−1) � δa2

2
� O(1), (3.30)

and mi depending on the friction parameter μ are given as follows:

m1 ≡ f

J2μ

ν2
1

ν2
2

k2 � 5
√

b2 + 6k2

ab2μ
, (3.31)

m2 ≡ f

J2μ
k4 � 5k4

a
√

b2 + 6μ
, (3.32)

m3 ≡ f

J2μ
k1 � 5k1

a
√

b2 + 6μ
, (3.33)

m4 ≡ f

J2μ

ν2
2

ν2
1

k3 � 5
√

b2 + 6k3

ab2μ
, (3.34)

where f is defined by

f ≡
√

J2

J1
=

√
a2 + 6
b2 + 6

, (3.35)

and approximation equations such as

fν2
1

J2ν2
2

� 5
√

b2 + 6
ab2

,
f

J2
� 5

a
√

b2 + 6
(3.36)

are used.
Finally, the effective equations of motion are obtained as follows:

Ẍ + ν2
1X + a1Ẋ + a2Ẏ = 0, (3.37)

Ÿ + ν2
2Y + a3Ẋ + a4Ẏ = 0, (3.38)

I3ṅ − (X,Y )
(
KD2 − K − SD

)
⎛
⎝ X

Y

⎞
⎠ = 0. (3.39)

Here, S and K are 2×2 matrices as follows:

K ≡

⎛
⎝ k1 −k3

k2 −k4

⎞
⎠ , S ≡

⎛
⎝ s1 s2

s3 s4

⎞
⎠ , (3.40)

where si are defined by

s1 ≡ ν2
1

(
n
√

J1J2k3 −
k1

μ

)
,

s2 ≡ ν2
2

(
n
√

J1J2k1 +
k3

μ

)
,

s3 ≡ ν2
1

(
n
√

J1J2k4 −
k2

μ

)
,

s4 ≡ ν2
2

(
n
√

J1J2k2 +
k4

μ

)
.

From Eqs. (3.31)–(3.34), it is found that these mi are approximated as mi � 5kj

abμ . Thus, mi take a
value of the order O(10−2) or O(10−1), because ki take an order O(1) or O(10) from Eqs. (3.27)–
(3.30) when 1

μ � O(10−2) is considered. Furthermore, when n � O(10−2) is considered, the order
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of the nki value becomes O(10−2) or O(10−1). After all, the maximal value of parameters ai is
estimated at order O(10−1). Thus the quantities of O(a2

i ) are neglected in the next section.

For the no-slip case (μ is sufficiently large),

mi � 0. (3.41)

Thus, it is observed that the effect of friction is included as 1
μ in the parameters mi.

4. A SLOWLY VARYING MODE

The motion of a rattleback contains a rapid frequency rattling mode and a slowly varying
amplitude mode. To discuss the number of spin reversals, the slowly varying mode should be
analyzed. In this section, by approximately solving the characteristic equation and considering the
time average of the rapid frequency mode, the equations of the slowly varying mode are derived
from the effective equations of motion which were obtained in the previous section.

To study the mode contained in X(t) and Y (t), the characteristic equation given in Eqs. (3.37)
and (3.38) is approximately solved. In this case, n is considered to be a constant, because ṅ is a
second-order term from Eq. (3.20). Moreover, the quantities of O(a2

i ) are neglected as explained in
the previous section.

Two modes are observed, which correspond to the rattling motion of the long axial direction
eiν1te−

a1
2

t and the short axial direction eiν2te−
a4
2

t. Then, the mode expansions of X(t) and Y (t) are
given by

X(t) = c1e
iλ1t + c∗1e

−iλ∗
1t + c2e

iλ2t + c∗2e
−iλ∗

2t,

Y (t) = d1e
iλ1t + d∗1e

−iλ∗
1t + d2e

iλ2t + d∗2e
−iλ∗

2t,

where λ1 ≡ ν1 + ia1
2 , λ2 ≡ ν2 + ia4

2 , and ∗ indicates a complex conjugate. The coefficients c1, c2, d1

and d2 are obtained from X(t) satisfying the equation of motion (Eq. (3.37)) and initial conditions
such as X(0) = x0, Y (0) = y0, Ẋ(0) = 0 and Ẏ (0) = 0 as follows:

c1 �
(

1
2
− i

a1

4ν1

)
x0 + i

a2ν
2
2

2ν1Δ
y0, c2 � −i

a2ν2

2Δ
y0,

d1 � −i
a2

1

8a2ν1
x0, d2 � −i

a2
1

8a2ν2
x0 +

(
1
2
− i

a4

4ν2

)
y0,

where Δ ≡ ν2
1 − ν2

2 . In order to obtain the behavior of n(t), the method of time averaging of
the terms in the rapidly varying mode such as eiνit is adopted. This rapidly varying mode is
contained in terms, such as X2 and XẊ, of the equation for ṅ(t). When the variables are given
by Q1(t) = F1(t)S1(t) and Q2(t) = F2(t)S2(t), (where Fi(t) are rapidly varying functions and Si(t)
are slowly varying functions such as e−

ai
2

t), the time average of Q1 and Q2 (〈Q1Q2〉) is defined as
follows:

〈Q1Q2〉 ≡ S1S2 lim
T→∞

1
T

∫ T

0
F1F2dt.

Then, neglecting terms O(a2
i ),

〈X2〉 � x2
0

2
e−a1t, 〈XẊ〉 � −x2

0

4
a1e

−a1t, 〈XẌ〉 � −ν2
1x2

0

2
e−a1t,

〈XẎ 〉 � a2
1

8a2
x2

0e
−a1t − a2ν

2
2

2Δ
y2
0e

−a4t � −〈Y Ẋ〉, 〈XY 〉 � 0, 〈XŸ 〉 � 0,

〈Y 2〉 � y2
0

2
e−a4t, 〈Y Ẏ 〉 � −y2

0

4
a4e

−a4t, 〈Y Ÿ 〉 � −ν2
2y2

0

2
e−a4t.
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From these equations, it is observed that 〈XẊ〉 and 〈Y Ẏ 〉 are O(ai). Thus, the main part of ṅ is
obtained as follows:

I3ṅ(t) � k1(〈XẌ〉 − 〈X2〉) − k4(〈Y Ÿ 〉 − 〈Y 2〉)

= −k1

2
A2 +

k4

2
B2, (4.1)

where
A ≡

√
ν2
1 − 1x0e

− a1
2

t, B ≡
√

ν2
2 − 1x0e

− a4
2

t. (4.2)

From the definitions given in Eq. (4.2), these variables satisfy the differential equations by using
the approximation ṅ � 0 as follows:

Ȧ = −a1

2
A, Ḃ = −a4

2
B. (4.3)

In the no-slip case (μ is sufficiently large), from Eq. (3.41), the parameters a1 and a4 are given as
a1 = −nk1 and a4 = nk4, respectively. Then, substituting these parameters into Eqs. (4.1) and (4.3)
gives equations that correspond to those obtained by Pascal [2], Markeev [3] and Moffatt and
Tokieda [5].

Multiplying Eq. (4.1) by n and using Eqs. (3.26) and (4.3), the following equation is obtained:

d

dt
(N2 + A2 + B2) = −m1A

2 − m4B
2, (4.4)

where N ≡
√

I3n. For the no-slip case (mi = 0), the variable E1 ≡ N2 + A2 + B2 corresponds to
the sum of energy about the rotation N , and the amplitudes of the long and short axial directions
(A and B, respectively) are conserved. Moreover, from Eq. (4.3), it is observed that the variable
E2 ≡ AγB is conserved, where γ ≡ k4

k1
. In the phase spaces of N , A and B, E1 corresponds to a

sphere and E2 corresponds to a quasi-hyperbolic cylinder. The trajectories of the system are closed
curves that intersect this cylindrical surface and the sphere. Therefore, an infinite number of spin
reversals is obtained.

In contrast, for the slip case, it is observed that the energy E1 decreases according to the right-
hand-side of Eq. (4.4), which relates to friction. By using the approximation ṅ � 0, it is assumed
that γ is almost constant and E2 is almost conserved; then, the trajectory of the system decreases
as the radius of the sphere of E1 decreases. Therefore, a finite number of spin reversals is obtained.

5. A NEW PHENOMENON FOR THE SLIP CASE
For the no-slip case, rattle vibration increases irrespective of how small the initial spin n0 is,

and in theory, spin reversal occurs. However, for the slip case, when n0 is small, vibration does not
increase, and rotation stops. Even if rattle vibration occurs, spin reversal does not. Thus, a critical
value of the spin nc1 may exist under which rattle vibration does not increase, and a critical value
of the spin nc2 may exist under which rattle vibration increases but spin reversal does not occur.
Therefore, it is assumed that the number of spin reversals is finite due to the existence of these
critical spin values. In this section, some new facts relating to these values are discussed.

5.1. Critical Spin nc1 Necessary to Increase Rattle Vibration

For spin reversal to occur, rattle vibration must increase. This vibration increases according to
the factor e−a1t and e−a4t. For the no-slip case, these factors are e+nk1t and e−nk4t. From Eqs. (3.27)
and (3.30), it is observed that nk1 and nk4 have the same sign and if one mode increases, the other
decreases. In contrast, for the slip case, m1 and m4 are in a1 and a4; hence, a1 > 0 and a4 > 0
occur according to the value of n. In this case, both modes decrease, and rattle vibration does not
increase. The spin values nc1± are given by

nc1+ ≡ m1

k1
= − cos2 θ + f2 sin2 θ

J2μ sin θ cos θ(f − f−1)
,

nc1− ≡ −m4

k4
=

f2 cos2 θ + sin2 θ

J2μ sin θ cos θ(f − f−1)
,
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for k1 > 0. For the case of k1 < 0, these values reverse and are given by nc1+ = −m4
k4

and nc1− = m1
k1

.
Therefore, it is observed that rattle vibration decreases for the initial spin n0 in the range
nc1− < n0 < nc1+.

5.2. Critical Spin nc2 Necessary to Reverse Rattleback Spin

When the spin is more than nc1, rattle vibration increases. However, the spin does not necessarily
reverse. A critical spin value nc2 may exist over which spin reversal occurs.

When starting with n0 > 0, although it is near the value of n0, for a while, rattle vibration begins
rapidly, and spin decreases. Eventually, the rattleback stops spinning and then reverses direction,
and the spin value decreases to n1 < 0. This spin value n1 is obtained as follows.

Now, consider the case for k1 > 0, k4 > 0 and n0 > 0. At first, the modes A and B exponentially
increase and decrease, respectively: therefore, from Eq. (4.1), ṅ approximates to

I3ṅ � −k1ν
2
1

2
A2. (5.1)

Integrating this equation from t0(n = n0 > 0) to t1(n = n1) gives

I3(n1 − n0) = −k1ν
2
1

2

∫ t1

t0

A2. (5.2)

Furthermore, Eq. (4.4) approximates to

d

dt
(I3n

2 + ν2
1A2) � −m1ν

2
1A2. (5.3)

Integrating this equation gives

ν2
1

∫ t1

t0

A2 � − I3

m1
(n2

1 − n2
0), (5.4)

where it is considered that A(t0) � 0 and A(t1) � 0. By substituting Eq. (5.4) into Eq. (5.2), n1 is
given by

n1 = −n0 +
2m1

k1
. (5.5)

Then it is observed that if n1 < 0, that is, the initial spin n0 > 2m1
k1

, one spin reversal occurs,
and if n0 � 2m1

k1
, no spin reversal occurs. Therefore, it is observed that if nc1+ = m1

k1
< n0 � 2m1

k1
,

rattle vibration increases but spin reversal does not occur. Similarly, when n0 < 0, the condition
n0 < −2m4

k4
must be satisfied for spin reversal to occur.

Finally, it is observed that there exist critical spins nc2± as follows:

nc2+ ≡ 2m1

k1
, nc2− ≡ −2m4

k4
.

When nc2− � n0 < nc1− or nc1+ < n0 � nc2+, rattle vibration increases but spin reversal does not
occur. For the case of k1 < 0, it is observed that nc2− and nc2+ are switched: nc2− = 2m1

k1
and

nc2+ = −2m4
k4

.

5.3. The Number of Spin Reversals nr

For the no-slip case, because dynamical energy is conserved, an infinite number of spin reversals
occur. In contrast, for the slip case, because friction exists, the number of spin reversals nr is finite.

As discussed in the previous section, for n1 < 0, the condition for the first spin reversal occurrence
is given by

1
h1

> 1, (5.6)
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where h1 is defined by

h1 ≡
∣∣∣∣
2m1

k1n0

∣∣∣∣ . (5.7)

Next, for the second spin reversal, if n1 satisfy n1 > nc1− = −m4
k4

, rattle vibration does not increase
and the rattleback stops spinning. When n1 satisfy nc1− > n1 > nc2− = −2m4

k4
, rattle vibration

increases but spin reversal does not occur. Therefore, the condition for the second spin reversal to
occur is as follows:

n1 < −2m4

k4
. (5.8)

Now, the spin value n2 after the second rattle vibration is estimated. Similar to the derivation of
n1 in the previous section, the following equation is obtained:

n2 = −n1 −
2m4

k4

= n0 −
2m1

k1
− 2m4

k4
.

Thus, if n2 > 0, the second spin reversal occurs. This condition is consistent with Eq. (5.8). The
condition for the second spin reversal occurrence is given by

1
h1

> 1 + ρ, (5.9)

where

ρ ≡ h4

h1
, h4 ≡

∣∣∣∣
2m4

k4n0

∣∣∣∣ .

From Eqs. (5.6) and (5.9), the condition that spin reversal occurs only once is given by 1 < 1
h1

�
1 + ρ. Similarly, the condition that spin reversal occurs only two times is given by 1 + ρ < 1

h1
� 2+ ρ,

and the condition that spin reversal occurs only three times is given by 2 + ρ < 1
h1

� 2 + 2ρ, and
so on.

It is observed that the number of spin reversals nr satisfies the following inequalities:

I. n0 > 0, k1 > 0, k4 > 0 or n0 < 0, k1 < 0, k4 < 0

K0(nr − 1, ρ) <
1
h1

� K0(nr, ρ), (5.10)

II. n0 > 0, k1 < 0, k4 < 0 or n0 < 0, k1 > 0, k4 > 0

K1(nr − 1, ρ) <
1
h1

� K1(nr, ρ), (5.11)

where

K0(n, ρ) ≡
n∑

i=0

P+(i) + P−(i)ρ,

K1(n, ρ) ≡
n∑

i=0

P+(i)ρ + P−(i),

P±(i) ≡ 1 ± (−1)i

2
.

Finally, from the inequalities stated in Eqs. (5.10) and (5.11), the number of spin reversals nr is
obtained.

REGULAR AND CHAOTIC DYNAMICS Vol. 19 No. 1 2014



94 TAKANO

For case (I), nr is given by

nr =

⎧⎨
⎩

2[x] + 1 if x − 1 � [x] < x − 1
1+ρ

2[x] if x − 1
1+ρ � [x] < x

(5.12)

and for case (II), nr is given by

nr =

⎧⎨
⎩

2[x] + 1 if x − 1 � [x] < x − 1 + 1
1+ρ

2[x] if x − 1 + 1
1+ρ � [x] < x

(5.13)

where x is defined by

x ≡ 1
h1(ρ + 1)

,

and [x] is Gauss’ symbol, which represents the greatest integer less than or equal to x.

5.4. Relationship Between the Number of Spin Reversals and the Rattleback’s Shape

In this subsection, the relationship between the number of spin reversals, the axis inclination
(δ � θ in Eq. (3.22)), the coefficient of friction μ and the rattleback’s shape is obtained.

The factor x = 1
h1(ρ+1) is written as

x =
1
2
J2μ|n0 sin θ cos θ|L(f),

where L(f) is the form factor given by

L(f) ≡ |f − f−1|
1 + f2

. (5.14)

This expression shows that the number of spin reversals is proportional to the coefficient of friction
μ, the axis inclination δ, and the initial spin n0. Therefore, when the friction is large (close to the
no-slip case) and the asymmetry between the shape axes and the principal inertia axes is large,
the number of spin reversals becomes large. Here, it is found that the form factor L(f) plays an
important role in determining the relation between the shape of the rattleback and the number of
spin reversals. When the long axis a is fixed, which corresponds to a fixed J2, enlarging f corresponds
to reduction in J1 from Eq. (3.35). Furthermore, from Eq. (3.14), reducing J1 corresponds to a
reduction in b, which indicates that the rattleback becomes long and slender. In contrast, reducing
f results in the rattleback becoming more circular, such as J1 = J2. The form factor L(f) has
maximum at f =

√
2 +

√
5. Thus, it is observed that if the rattleback becomes long and slender,

rattle vibration about the short axis does not easily occur and the number of spin reversals is
reduced. This also occurs if the rattleback is more circular. The relationship between a and b
corresponding to the maximum of f is given by

b2 =
a2 + 6
2 +

√
5
− 6. (5.15)

For example, if a = 10, b becomes approximately 4.4. Figure 3 shows the change in the form factor
L(f) when a = 10 is fixed and b is varied from 1 to 10. It is observed that there is a maximum
value around b � 4.4.

6. NUMERICAL RESULTS
In this section, the results of computations based on the exact system described in Eqs. (2.6)–

(2.10) are presented and compared with those based on the effective equations of motion described
in Eqs. (3.37)–(3.39).

For the numerical simulations, the NDsolve command in Mathematica is used.
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Fig. 3. The form factor L(f) versus b for a = 10.

6.1. Validity of the Approximation v̇0 � v̇p

In Section 3, the approximation v̇0 � v̇p was used to derive effective equations of motion.

The initial conditions are x0 = y0 = 0.01, ẋ0 = ẏ0 = 0 and n0 = 0.05 with parameters a = 10,
b = 3, and δ = 0.03. Figure 4 shows the behavior of v̇01 and v̇p1 for μ = 100, and Fig. 5 shows
the behavior of v̇02 and v̇p2 for μ = 100. From Figs. 4 and 5, the comparison of the amplitudes

Fig. 4. Time evolution of v̇01 and v̇p1 for μ = 100.

Fig. 5. Time evolution of v̇02 and v̇p2 for μ = 100.

shows that v̇p1 � v̇01 × 1
50 and v̇p2 � v̇02 × 1

50 . Thus, it can be safely assumed that v̇01 � v̇p1 and
v̇02 � v̇p2. Figures 6 and 7 are the same as Figs. 4 and 5, respectively, but for μ = 200. In this case,
it is similarly shown that v̇p1 � v̇01 × 1

100 and v̇p2 � v̇02 × 1
100 . Thus, v̇01 � v̇p1 and v̇02 � v̇p2. Note

that the approximation improves when μ increases. After all, it is concluded that the approximation
v̇0 � v̇p is valid.
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Fig. 6. Time evolution of v̇01 and v̇p1 for μ = 200.

Fig. 7. Time evolution of v̇02 and v̇p2 for μ = 200.

6.2. nc1±, nc2±, and Spin Reversal Behavior

In Sections 5.1 and 5.2, the critical values of spin necessary to increase rattle vibration and
cause spin reversal are obtained. Here, computational results for these values and the spin reversal
behavior which are obtained from a simulation based on the exact system are presented.

The initial conditions are x0 = y0 = 0.01, and ẋ0 = ẏ0 = 0 with parameters a = 10, b = 3, and
δ = 0.03. The coefficient of friction is set to μ = 75. For these initial conditions, the following critical
values of spin are obtained: nc2+ = 0.00358, nc1+ = 0.00179, nc1− = −0.01, and nc2− = −0.0201.
Figure 8 shows the computed evolution of n(t). In Fig. 8a, as discussed in Section 5.1, the dotted
line with the initial spin n0 = 0.0015 < nc1+ shows that rattle vibration does not increase. As
discussed in Section 5.2, the dashed line with the initial spin nc1+ < n0 = 0.003 < nc2+ shows that
rattle vibration increases but spin reversal does not occur. The solid line with the initial spin
nc2+ < n0 = 0.005 shows that the spin reversal behavior agrees with that discussed in Section 5.2.
Figure 8b shows the behavior of n(t) for negative initial spins n0 = −0.006 (dotted line), −0.015
(dashed line), and −0.025 (solid line). Even if the initial spin is negative, the same behavior occurs
about nc1− and nc2−. Thus, it is observed that spin reversal behaviors are dependent on these
critical values.

6.3. The Number of Spin Reversals nr and the Friction Coefficient μ

This subsection discusses how the number of spin reversals nr changes depending on the friction
coefficient μ. This number of spin reversals is obtained from a simulation based on the exact system
described in Eqs. (2.6)–(2.10).

The initial conditions are x0 = y0 = 0.01, ẋ0 = ẏ0 = 0, and n0 = 0.05 with parameters a = 10,
b = 3, and δ = 0.03. Figure 9a shows the behavior of n(t) for μ = 60 (solid line), 130 (dotted line)
and 200 (dashed line). It is observed that for each of these μ values, the number of spin reversals
increases to three, six, and nine times, respectively. Figure 9b shows the behavior of spin n(t) for
μ = 500 (solid line), 1000 (dotted line), 1500 (dashed line). Note that the spin behavior is similar
to that for the no-slip case as the friction increases.

We usually consider that when friction increases, the energy loss becomes large, so that the
reverse number decreases. The numerical simulations show the opposite thing to this intuition. In
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Fig. 8. Time evolution of n(t) with (a) positive initial spin with n0 = 0.0015 (dotted line), 0.003 (dashed
line), and 0.005 (solid line) and (b) negative initial spin with n0 = −0.006 (dotted line), −0.015 (dashed line)
and −0.025 (solid line).

Fig. 9. Time evolution of n(t). (a) The initial values of μ are 60 (solid line), 130 (dotted line), and 200 (dashed
line). (b) The initial values of μ are 500 (solid line), 1000 (dotted line), and 1500 (dashed line).

reality, the contact with the horizontal plane is not a point but an area, spinning torque due to
rotation n seems to effect the dynamics of rattleback as discussed by Garcia and Hubbard [12].
The adopted model does not include this spinning torque, so that the energy loss depends only on
the velocity vp which becomes small when the friction coefficient μ becomes large, thus, it may be
considered that the number of spin reversals increases. Moreover, in reality, when the spin reversal
does not occur, the contact point xp settles down to x = y = 0 and z = 1, and the slip velocity vp

is equal to zero. Then, the rattleback stops spinning after a while. In contrast, in the numerical
simulation, if we set the conditions vp = 0, ẍ = ẋ = x = 0, and ÿ = ẏ = y = 0, ṅ becomes zero from
Eq. (3.15). Therefore, the spin n(t) becomes constant and does not stop after the spin reversal ends,
as shown in Fig. 9a. It is considered that these phenomena are also dependent on not considering
spinning torque due to the frictional force by spinning.

6.4. The Approximate Number of Spin Reversals nr:ap Versus the Exact Number
of Spin Reversals nr:ex

In this section, the approximate number of spin reversals nr:ap obtained from Eqs. (5.12)
and (5.13) in Section 5.3 is compared with the exact number of spin reversals nr:ex obtained from
a simulation based on the exact system described in Eqs. (2.6)–(2.10).

The initial conditions are x0 = y0 = 0.01, ẋ0 = ẏ0 = 0 and n0 = 0.05 with parameters a = 10,
b = 3, and δ = 0.03. Figure 10 shows the number of spin reversals nr for a range of values of μ
from 20 to 200. Crosses represent nr:ex and the boxes represent nr:ap. Up to μ � 70, both values are
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Fig. 10. The number of spin reversals nr versus μ: � represents nr:ap and × represents nr:ex.

almost identical, but the difference increases as μ increases. It is assumed that the terms neglected
in the approximation affect energy dissipation. Thus, for a given value of μ, nr:ap is larger than nr:ex.

6.5. The Form Factor L(f) and nr:ex

This section discusses the relationship between the form factor defined in Eq. (5.14) and nr:ex.
The initial conditions are x0 = y0 = 0.01, ẋ0 = ẏ0 = 0, and n0 = 0.05 with parameters a = 10,

and δ = 0.03. Figure 11 shows the behavior of nr:ex as a function of the parameter b for μ = 100
and 200. Note that the b dependence of nr:ex is similar to that of the form factor presented in Fig. 3.
Therefore, the estimate derived from the effective equations of motion is qualitatively correct.

14

12

10

8

6

4

2

0

0 1 2 3 4 5 6 7 8 9 10

Fig. 11. The number of spin reversals nr:ex versus b.

7. DISCUSSION AND CONCLUSIONS
In this paper, in order to answer the questions mentioned in the introduction, the behavior of

a rattleback with viscous friction is examined.
The following results have been established analytically and confirmed numerically.
Critical values of the initial spin exist:nc1± and nc2±. When the initial spin n0 is in the region

nc1− < n0 < nc1+, rattle vibration does not increase. When the initial spin n0 is in the region
nc2− < n0 < nc1− or nc1+ < n0 < nc2+, rattle vibration increases but spin reversal does not occur.
A numerical simulation based on the exact equations of motion has confirmed the existence of these
values.

The number of spin reversals nr is theoretically obtained as a function of the coefficient of
friction μ and the form factor L(f), which contains the ratio of a to b.
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From the expression of nr, it was found that the number of spin reversals increases as μ increases
and a certain value of the ratio of a to b gives the maximum number of spin reversals.

In this paper, viscous friction is adopted to perform a first examination of spin reversal. However,
in reality it is assumed that spin reversal is associated with the effect of Coulomb friction.

Furthermore, it seems that rolling friction and friction by spinning are also effective. Therefore,
these frictions should be adopted to further understand the rattleback behavior. This is a subject
for future investigations.
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