
Analyzing the Motion of a Washer on a Rod

Hiroshi Takano1

1Educational Studies on Global-ICT-Teaching and Learning, Joetsu University of Education
1 Yamayashiki-cho, Joetsu, Niigata, 943-8512, Japan∗

(Dated: Mar. 11, 2023)

This paper investigates the dynamics of a toy known as the chatter ring. Specifically, it examines the mechanism
by which the small ring rotates around the large ring, the mechanism by which the force from the large ring provides
torque to the small ring, and whether the motion of the small ring is the same as that of a hula hoop. The dynamics
of a chatter ring has been investigated in previous work [13, 14, 15]; however, a detailed analysis has not yet been
performed. Thus, to understand the mechanisms described above, the equations of motion and constraint conditions
are obtained, and an analysis of the motion is performed. To simplify the problem, a model consisting of a straight
rod and a washer ring is analyzed under the no-slip condition. The motion of a washer has two modes: the one point
of contact (1PC) mode and two points of contact (2PC) mode. The motion of the small ring of the chatter ring is
similar to that of a washer in the 2PC mode, whereas the motion of a hula hoop is similar to that of a washer in the
1PC mode. The analysis indicates that the motion of a washer with two points of contact is equivalent to free fall
motion. However, in practice, the velocity reaches a constant value through energy dissipation. The washer rotates
around an axis that passes through the two points of contact. The components of the forces exerted by the rod at the
points of contact that are normal to the plane of the washer provide rotational torque acting at the center of mass.
The components of the forces parallel to the horizontal plane are centripetal forces, which induce the circular motion
of the center of mass.

I. INTRODUCTION

Some toys, such as tip tops and rattlebacks [1, 2, 3, 4], exhibit curious and interesting behavior. A chatter ring,
also known as a jitter ring or gyro ring, is a toy with a large loop made from a metal rod on which there are small
rings, as illustrated in Fig. 1(a). Like the aforementioned toys, the small rings of a chatter ring also exhibit interesting
behavior.

FIG. 1. (a) Jitter ring and gyro ring. (b) Rod with a torus-shaped ring (left) and rod with a washer (right).

The chatter ring is played with as follows. First, rotation of the small rings is initiated by hand, and then the large
ring is rotated by hand to apply a constant rotation to the small rings. The purpose of playing with a chatter ring
is not only to keep the small rings rotating, but also to learn various skills with different levels of difficulty. After
learning individual skills, combining them can result in impressive performances. Videos of such performances have
been uploaded to the Japan Chatter Ring Association [5] website and to YouTube.
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A phenomenon similar to that of chatter ring motion can be observed in the artwork of K. Sato [6]. For example,
the work Over the Waves (1974) contains three wires, and a wire shaped like a wave is attached to a plate. A small
ring on the wire is rotated by an electromagnetic force provided by the coil of a motor hidden under the plate. The
small ring moves to the edge of the plate and then returns in the opposite direction. The principle of the motion of
the small ring is considered to be the same as that of the chatter ring.

The motion of the small ring of a chatter ring is not well understood. Specifically, it is unclear how the small ring
rotates around the large ring, how the large ring provides torque to the small ring, and whether the motion of the
small ring is the same as that of a hula hoop [7]. The motion is predicted easily to be caused by the frictional force
between the large ring and small ring. But it is necessary to produce and analyze the equations of motion in order to
understand the magnitude and direction of that force in detail.

Tip tops and rattlebacks spin on a flat plane, whereas in a chatter ring, the small ring spins on the curved surface of
the large ring. Thus, the analysis of a chatter ring is more difficult than that of a rattleback. The rolling behavior of a
rigid body moving on a sphere has been studied [8], and the equations of motion of a rigid body have been presented
for arbitrary body and surface shapes. An example of the motion of a rigid body moving on a curved surface is the
motion of a ball rolling inside a cylinder. This problem has been discussed in the literature [9, 10, 11, 12]; however,
the behavior of a rigid body, such as the small ring of a chatter ring, has not yet been studied.

Considering the motion of the large ring makes the analysis of the motion of the small ring difficult. As the motion
of the large ring only serves to the height of the small ring fixed, we can replace the large ring with a long rod. We can
then analyze a model that consists of a fixed long rod and small ring, as illustrated in Fig. 1(b). We assume that the
motion of the ring on the rod is essentially the same as that of the small ring of a chatter ring. In fact, photographing
these motions with a high-speed camera and comparing them indicates that they are almost the same. Using the
model consisting of the long rod allows us to perform experiments with rods of various thicknesses and rings with
various inner diameters, thereby enabling detailed analysis of the dynamics [13].

The motion of the small ring has two modes [14]. One is rotation while remaining in a fixed position with one point
of contact (1PC mode). This motion is similar to that of a hula hoop and a ball rolling inside a cylinder [11, 12]. The
second mode is movement in one direction while rotating with two points of contact (2PC mode). This movement is
similar to that of the small ring of a chatter ring. The trace of the two points of contact is a double helix on the rod
surface [15]. Videos of these modes of motion are available on the website of Hunt [14].

FIG. 2. Rod and washer ring whose inner diameter has a sharp tip. (a) l1 is the radius of the inner circle C of the ring, while
l2 is the radius of the outer circle of the ring. (b) l3 is the radius of the rod and the d is the thickness of the washer.

For a torus-shaped ring or thick washer, it is possible but difficult to determine the position of the point of contact,
thus complicating the analysis of the equations of motion. Therefore, we consider a special washer ring whose inner
diameter has a sharp tip. The shapes of the washer and rod are illustrated in Fig. 2. We fix the point of contact with
one parameter because the point is on a one-dimensional circle. Using only one parameter makes the analysis of the
equations of motion simpler than in the case of a torus-shaped ring. The radius of the inner circle C of the ring is l1,
while the radius of the outer circle of the ring is l2, as indicated in Fig. 2(a). The radius of the rod is l3, as illustrated
in Fig. 2(b).

In this paper, we obtain the equations of motion of the washer and rod system when the washer ring moves with
one point of contact and two points of contact. We then analyze the motion to clarify the dynamics of the chatter
ring.
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II. WASHER AND ROD SYSTEM

A. Angles between frames that define the configuration of the washer

The washer and rod system is illustrated in Fig. 3. The unit vectors of the principal axes of inertia are ēi(i = 1, 2, 3),
and the frame Ēi(i = 1, 2, 3) is fixed to the rod. The point of contact is denoted by P , the origin of the frame Ēi is

denoted by O, and the origin of the frame ēi is the center of mass denoted by G. The position vectors are rt =
−−→
OP ,

rg =
−−→
OG, and r =

−−→
GP . These vectors are related by the following equation:

rg = rt − r. (1)

To obtain the angular velocity ω, we require a matrix R that relates ēi to Ēi, such as

FIG. 3. Washer and rod system. P denotes the point of contact. The position vectors are r =
−−→
GP , rt =

−−→
OP , and rg =

−−→
OG.

The unit vectors of the principal axes of inertia are ēi(i=1,2,3), and Ēi(i=1,2,3) represents the frame fixed to the rod.

ēi = RijĒj . (2)

First, as illustrated in Fig. 4(a), we set Ēi = ēi, and the point of contact P is on the ē1 axis. Then, the washer is
rotated by an angle ϕ around the axis ē3 without slipping. The point of contact moves to position P , where the angle

between the position vector
−−→
GP and unit vector ē1 is ϕ. The unit vector on the line GP is denoted by e

(a)
1 . The axis

e
(a)
2 is obtained by rotating the axis ē2 by ϕ. Point P ′ is a point obtained by projecting point P onto the Ē1, Ē2

plane, and we set the unit vector E1 on the line OP ′. η denotes the angle between Ē1 and E1. Next, the washer

is rotated by an angle ψ around axis e
(a)
1 . The axes after rotation by an angle ψ are denoted by e

(b)
i as illustrated

in Fig. 4(b). The dotted lines represent the original axes e
(a)
i before the rotation. Lastly, the washer is rotated by

an angle θ around axis e
(b)
2 without moving the point of contact P . The axes after rotation θ are denoted by ei as

displayed in Fig. 4(c). Fig. 4(d) presents the motion of the axes rotated by an angle θ after rotation by an angle ψ.

The axes are related as follows:

ei = R3ϕij ēj , (3)

Ei = R3ηijĒj , (4)

Ei = R1ψijR2θjkek, (5)
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FIG. 4. (a) ϕ is the angle between ē1 and the rotated axis e
(a)
1 , while η is the angle between Ē1 and the rotated axis E1. (b)

ψ is the angle between the axes e
(a)
2,3 and the rotated axes e

(b)
2,3. (c) θ is the angle between the the axes e

(b)
1,3 and the rotated

axes e1,3. (d) Motion of the axes rotated by an angle θ after rotation by an angle ψ.

where

R3ϕ ≡

 cosϕ sinϕ 0
− sin θ cosϕ 0

0 0 1

 , R3η ≡

 cos η sin η 0
− sin η cos η 0

0 0 1

 , (6)

R1ψ ≡

 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

 , R2θ ≡

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .
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Thus, we obtain the relation between ēi and Ēi as

ē = RĒ, R ≡ R−1
3ϕR

−1
2θ R

−1
1ψR3η, (7)

where we omit the subscript of the matrix. The connection between two reference frames is parametrized by three
Euler angles, although it appears to be described by four independent parameters in Eq. (7). There are still three
independent parameters since eta, phi, and psi are related by the no-slip condition Eq. (31), which we will see later
in Section IIIA. It is suitable to describe the configuration of a rigid body with four parameters and then impose
constraint conditions, in order to describe it that moves without slipping on the surface of a curved rod.

The order of rotation is important. If the washer is first rotated by an angle θ around the e
(a)
2 axis as illustrated in

Fig. 5(a) after the ϕ rotation, then it must be rotated by an angle ψ around the e
(a)
1 = E1 axis perpendicular to the

surface of rod, but not around the e
(b)
1 axis as illustrated in Fig. 5(b). If the washer is rotated around the e

(b)
1 axis,

the washer gets stuck. The e
(a)
3 = E3 axis, the e

(b)
3 axis, the e

(a)
1 = E1 axis and the e

(b)
1 axis are in the same plane

as illustrated in Fig. 5(c). Thus it can be seen that E
(b)
3 , e3, e

(a)
1 = E1 and e1, which are obtained by rotating these

axes around the e
(a)
1 = E1 axis, are also in the same plane as illustrated in Fig. 5(c). Moreover, it can be seen that

E3, E
(b)
3 , E2 and e2 are in the same plane as illustrated in Fig. 5(c). Thus, we have the relation equations below

E1 = cos θe1 + sin θe3, (8)

E
(b)
3 = − sin θe1 + cos θe3, (9)

E2 = cosψe2 + sinψE
(b)
3 , (10)

E3 = − sinψe2 + cosψE
(b)
3 . (11)

Substitution of Eq. (9) into Eq. (10) and Eq. (11) yields the following equations:

E2 = − sinψe1 + cosψe2 + sinψ cos θe3, (12)

E3 = − cosψ sin θe1 − sinψe2 + cosψ cos θe3. (13)

We find that the relation equations Eq. (8), Eq. (12) and Eq. (13) between the ei axes and the Ei axes are the same
as Eq. (5).

FIG. 5. (a) θ is the angle between e
(a)
1,3 and the rotated axis e

(b)
1,3. e

(a)
2 = e

(b)
2 = E2 is the axis of rotation. (b) Dashed vectors

are e
(b)
i frame. ψ is the rotation angle around the E1. (c) Motion of the axes rotated by an angle ψ after rotation by an angle

θ.

We present several examples of washer configurations. Fig. 6 illustrates the washer system at a positive value of
θ and ψ = 0. Fig. 6(1) indicates that there is one point of contact, while Fig. 6(1)(a) presents the view from above
and the curved line C1, which is obtained by projection of the inner circle of washer C onto the plane defined by unit
vectors E1 and E2. Fig. 6(1)(b) presents the view from the direction parallel to e1, while Fig. 6(1)(c) presents the

view from the side. Fig. 6(2) illustrates the washer configuration that has two points of contact, P and P̃ , at the value
of θc > 0. The value of θc is determined in Section IVB. Fig. 6(3) presents an unrealistic situation at the value of
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FIG. 6. Washer configurations at ψ = 0, θ ≧ 0. (1) One point of contact, P . C1 is a curved line which is obtained by projection

of the inner circle of washer C onto the plane defined by unit vectors E1 and E2. (2) Two points of contact, P and P̃ , at the
value of θc > 0. (3) Unrealistic situation at the value of θ > θc in which the washer gets stuck in the rod.

θ > θc in which the washer gets stuck in the rod. In each of the subfigures of Fig. 6, the view from above is displayed
in (a), the view from the direction parallel to e1 is displayed in (b), and the view from the side is displayed in (c).

Fig. 7 displays washer configurations at a positive value of ψ and θ = 0. Fig. 7(1) indicates that there is only one
point of contact, while Fig. 7(2) illustrates the configuration with ψc where the curvature of C1 at point P is equal
to that of the rod. The value of ψc is determined in Section IVB. When the absolute value of ψ becomes larger than
ψc, the washer gets stuck in the rod, as illustrated in Fig. 7(3).

FIG. 7. Washer configurations at θ = 0, ψ ≧ 0. (1) One point of contact, P . (2) Configuration with ψc where the curvature of
C1 at point P is equal to that of the rod. (3) When the absolute value of ψ becomes larger than ψc, the washer gets stuck in
the rod.

We observe the configuration of the washer at a value of ψ and θ. Fig. 8 presents configurations when θ > 0.
Fig. 8(1) presents the configuration with two points of contact while Fig. 8(2) presents the configuration with one
point of contact when ψ < 0. Fig. 8(3) presents the configuration with one point of contact while Fig. 8(4) presents

the configuration with two points of contact when ψ > 0. In Fig. 8(1), when ϕ̇ > 0, it follows from Eq. (32) that the
washer moves upward, while in Fig. 8(4), the washer moves downward. Fig. 9 presents configurations when θ < 0.
Fig. 9(1) presents the configuration with two points of contact while Fig. 9(2) presents the configuration with one
point of contact when ψ > 0. Fig. 9(3) presents the configuration with one point of contact while Fig. 9(4) presents

the configuration with two points of contact when ψ < 0. In Fig. 9(1), when ϕ̇ > 0, it follows from Eq. (32) that
the washer moves upward, while in Fig. 9(4), the washer moves downward. Figs. 8(1) and 9(1) display the same
configuration, and Figs. 8(4) and 9(4) also display the same configuration.
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FIG. 8. Washer configurations at θ > 0. (1) Configuration with two points of contact, P and P̃ when ψ < 0. (2) Configuration
with one point of contact, P when ψ < 0. (3)Configuration with one point of contact, P when ψ > 0. (4)Configuration with

two points of contact, P and P̃ when ψ > 0.

FIG. 9. Washer configurations at θ < 0. (1) Configuration with two points of contact, P and P̃ when ψ < 0. (2) Configuration
with one point of contact, P when ψ < 0. (3)Configuration with one point of contact, P when ψ > 0. (4)Configuration with

two points of contact, P and P̃ when ψ > 0.

B. Vector Components

We examine the relation between the components of vector A with different coordinates. There is a relation between
the coordinate frame x and y, given by

yi = Kijxj .

The component of vector A is denoted by αi(βi) with respect to the frame x(y), and in the following discussion, we
use the notation

A = (α1, α2, α3)x = (β1, β2, β3)y.

Vector A is expressed as

A = αjxj = βiyi = βiKijxj .

Then, using K−1 = Kt, we have the relation

αj = βiKij , βi = Kijαj . (14)
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This relation indicates that the transformation rule of the components has the same form as that of the coordinate
frame. Thus, we obtain the relation equations between the components in each coordinate, A = (ai)e = (āi)ē =
(Ai)E = (Āi)Ē , as follows:

ai = R3ϕij āj , (15)

Ai = R3ηijĀj , (16)

Ai = R1ψijR2θjkak. (17)

The time derivative of vector A = (ā1, ā2, ā3)ē = (a1, a2, a3)e is given by

d

dt
A =

(
d

dt
āi

)
ēi + ω ×A. (18)

When we obtain the components of the equation of motion, the expression d
dtA with respect to components ai and

ωi of frame e is useful. The first term on the right hand side of Eq. (18) contains a term proportional to ϕ̇ and is
given by (

d

dt
āi

)
ēi =

d

dt

(
R−1

3ϕijaj

)
R−1

3ϕikek =

((
d

dt
R−1

3ϕij

)
aj +R−1

3ϕij ȧj

)
R−1

3ϕikek

=

(
aj

(
d

dt
R3ϕji

)
+ ȧjR3ϕji

)
R−1

3ikek

= ((a1, a2, a3)e

 −ϕ̇ sinϕ ϕ̇ cosϕ 0

−ϕ̇ cosϕ −ϕ̇ sinϕ 0
0 0 0

+ ȧjR3ϕji)R
−1
3ϕikek

= (ȧ1 − ϕ̇a2, ȧ2 + ϕ̇a1, ȧ3)e, (19)

where ȧi ≡ d
dtai, and we use Eq. (15) and the relations ā = R−1

3ϕ a and R−1
3ϕij = R3ϕji. The second term on the right

hand side of Eq. (18) is given by

ω ×A = (ω2a3 − ω3a2, ω3a1 − ω1a3, ω1a2 − ω2a1)e, (20)

where the components of the angular velocity ω are represented by ω = (ω̄1, ω̄2, ω̄3)ē = (ω1, ω2, ω3)e. The components
of the angular momentum L are represented by L = (L̄1, L̄2, L̄3)ē = (L1, L2, L3)e. In addition, L̄i represents the
angular momentum along the principal axis of inertia. These components relate to the angular velocity ω̄i as follows:

L̄1 = Ī1ω̄1, L̄2 = Ī1ω̄2, L̄2 = Ī3ω̄3, (21)

where Īi(i=1,2,3) represents the principal moments of inertia for each principal axis of inertia, and we use Ī1 = Ī2.
The values Li are given as

L1 = cosϕL̄1 + sinϕL̄2 = Ī1(cosϕω̄1 + sinϕω̄2) = Ī1ω1,

L2 = − sinϕL̄1 + cosϕL̄2 = Ī1ω2, L3 = Ī3ω3, (22)

where we use the relations Li = R3ϕijL̄j and ωi = R3ϕijω̄j .
Lastly, we obtain the time derivative of the angular momentum:

d

dt
L = (L̇1 − ϕ̇L2, L̇2 + ϕ̇L1, L̇3)e + (ω2L3 − ω3L2, ω3L1 − ω1L3, ω1L2 − ω2L1)e

= (Ī1(ω̇1 − ϕ̇ω2)− (Ī1 − Ī3)ω2ω3, Ī1(ω̇2 + ϕ̇ω1)− (Ī3 − Ī1)ω3ω1, Ī3ω̇3)e. (23)

III. MOTION OF THE WASHER WITH ONE POINT OF CONTACT

A. No-slip Condition

We consider the rolling motion of a rigid body A without slipping on the surface of a rigid body B fixed to a desk
or table, as illustrated in Fig. 10(a). The principal central axes of inertia of the body A are ēi, while OA is the center
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FIG. 10. Rolling motion of rigid body A without slipping on the surface of rigid body B. (a) Bodies A and B. (b) Locus of the
points of contact PA and PB fixed to bodies A and B.

of mass of A. An absolute coordinate frame Ēi is fixed to body B, and the origin is denoted by OB . Points PA and
PB refer to the point of contact P on the surface of bodies A and B, respectively.

The position vectors of the point of contact P from origin OA and origin OB are denoted by r and rt, respectively.
The position vector of the center of mass OA from origin OB is denoted by rg.
If body A moves on the surface of body B without slipping, the loci of the points of contact PA and PB are

obtained by PA1, PA2, PA3 and PB1, PB2, PB3 in Fig. 10(b), respectively. The position vector r has the coordinate
r = r̄i(t)ēi(t). The velocity of PA, which is denoted by vA, is obtained by moving with the coordinate ēi(t) and is
thus

vA =

(
d

dt
r̄i(t)

)
ēi(t). (24)

Similarly, the vector rt = r̄ti(t)Ēi moves on the surface of B along the locus PB1, PB2, PB3. In the same way, the
velocity of PB , denoted by vB , is given by

vB =

(
d

dt
r̄ti(t)

)
Ēi. (25)

Without slipping, the equation for the constraint condition

vA = vB (26)

is satisfied, and the direction of vA,B is in the tangent plane at the point of contact P .
For the rod and washer, the position vector r illustrated in Fig. 3 is expressed as

r = (l1, 0, 0)e = (l1 cosϕ, l1 sinϕ, 0)ē (27)

= l1(cos θ,− sin θ sinψ,− sin θ cosψ)E

= l1(cos η cos θ + sin η sin θ sinψ, sin η cos θ − cos η sin θ sinψ,− sin θ cosψ)Ē,

where we use Eqs. (15), (16), and (17). The position vector rt displayed in Fig. 3 is expressed as

rt = (l3, 0, z)E = (l3 cos η, l3 sin η, z)Ē , (28)

where z is the height of the point of contact P with respect to axis E3. The relation rg = rt − r seen in Fig. 3
indicates that rg becomes the following:

rg = (l3 − l1 cos θ, l1 sinψ sin θ, z + l1 cosψ sin θ)E (29)

= (l3 cos η − l1(cos η cos θ + sin η sin θ sinψ),

l3 sin η − l1(sin η cos θ − cos η sin θ sinψ),

z + l1 sin θ cosψ)Ē. (30)
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Substitution of Eq. (27) into Eq. (24) yields the following equation:(
d

dt
r̄i(t)

)
ēi(t) = (−l1ϕ̇ sinϕ, l1ϕ̇ cosϕ, 0)ē

= (−l1ϕ̇ cosψ sin η, l1ϕ̇ cosψ cos η,−l1ϕ̇ sinψ)Ē ,

where we use Eq. (7), which relates ē to Ē. Furthermore, substitution of Eq. (28) into Eq. (25) yields the following
equation: (

d

dt
r̄ti(t)

)
Ēi = (−l3η̇ sin η, l3η̇ cos η, ż)Ē .

Thus, using Eq. (26), we obtain the constraint condition equations:

l1ϕ̇ cosψ = η̇l3, (31)

l1ϕ̇ sinψ = −ż. (32)

The equation of the relation between ż and η̇ is given as

ż = −η̇l3 tanψ. (33)

If ψ is a constant, Eq. (33) yields z = −ηl3 tanψ + z0, where z0 is a constant of integration. This indicates that the
locus of the point of contact is a spiral with pitch ψ. This case is discussed in Section IV.
Differentiation of Eq. (1) and the use of Eqs. (18) and (26) yield

d

dt
rg =

(
d

dt
r̄ti

)
Ēi −

((
d

dt
r̄i

)
ēi + ω × r

)
= r × ω, (34)

from which we find that the velocity of the center of mass is given by the angular velocity.

B. Angular Velocity

In general, when the relation between ē and Ē is given by a matrix R, as defined by Eq. (7), comparing d
dt ēi = ṘijĒj

with d
dt ēi = ω × ēi yields the component of the angular velocity ω = (ω̄1, ω̄2, ω̄3)ē as

ϵijkω̄k = (ṘRt)ij ,

where ϵ is the Levi-Civita symbol. The matrix ṘRt is found to be an antisymmetric matrix, and the components of
the angular velocity ω are obtained as

ω̄1 = (ṘRt)23 = −θ̇ sinϕ− ψ̇ cos θ cosϕ+ η̇(sinϕ sinψ − sin θ cosϕ cosψ),

ω̄2 = (ṘRt)31 = θ̇ cosϕ− ψ̇ cos θ sinϕ− η̇(cosϕ sinψ + sin θ sinϕ cosψ),

ω̄3 = (ṘRt)12 = −ϕ̇− ψ̇ sin θ + η̇ cos θ cosψ,

and

ω1 = −ψ̇ cos θ − η̇ sin θ cosψ, (35)

ω2 = θ̇ − η̇ sinψ, (36)

ω3 = −ϕ̇− ψ̇ sin θ + η̇ cos θ cosψ, (37)

where we use Eq. (15). We can also obtain the same form of ω from the equation as

ω = −ϕ̇e3 + θ̇e2 − ψ̇E1 + η̇E3.

The transformation rules in Eq. (5),

E1 = cos θe1 + sin θe3,

E3 = − cosψ sin θe1 − sinψe2 + cosψ cos θe3, (38)
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indicate that the components of the angular velocity ω = (ω1, ω2, ω3)e expressed in coordinate frame e are as follows:

ω1 = −ψ̇ cos θ − η̇ sin θ cosψ,

ω2 = θ̇ − η̇ sinψ,

ω3 = −ϕ̇− ψ̇ sin θ + η̇ cos θ cosψ.

These equations are equal to Eqs. (35), (36), and (37), respectively.
With the no-slip condition Eq. (31), ω becomes ω1

ω2

ω3

 = M

 ϕ̇

θ̇

ψ̇

 , M ≡

 −κ1 0 − cos θ
−κ2 1 0
κ3 0 − sin θ

 , (39)

 ϕ̇

θ̇

ψ̇

 =
1

detM

 − sin θ 0 cos θ
−κ2 sin θ detM κ2 cos θ

−κ3 0 −κ1

 ω1

ω2

ω3

 , (40)

detM =
l1
l3

cosψ2 − cos θ, (41)

where

κ1 ≡ l1
l3

sin θ cos2 ψ, κ2 ≡ l1
l3

cosψ sinψ, κ3 ≡ l1
l3

cos θ cos2 ψ − 1. (42)

C. Equations of Motion

The equations of motion of the washer rolling with one point of contact are given as

d

dt
L = r × f , (43)

m
d

dt
vg = f −mḡE3, (44)

where L is the angular momentum, f is the contact force, vg ≡ d
dtrg is the velocity of the center of mass, and ḡ is the

gravitational acceleration constant. Substitution of Eq. (44) into Eq. (43) and use of the no-slip condition Eq. (34)
yield the equation of motion

d

dt
L = r ×

(
m
d

dt
(r × ω) +mḡE3

)
. (45)

The three components of d
dtL are already obtained from Eq. (23). It follows from Eqs. (19) and (20) that

d

dt
(r × ω) = l1(ϕ̇ω3 + ω2

1 + ω2
2 ,−ω̇3 − ω1ω2, ω̇2 − ω1ω3)e.

The first term on the right hand side of Eq. (45) can be expressed as

r × d

dt
(r × ω) = l21(0, ω1ω3 − ω̇2,−ω1ω2 − ω̇3)e.

The second term on the right hand side of Eq. (45) can be obtained as

mḡr ×E3 = mḡ(0,−l1 cos θ cosψ,−l1 sinψ)e
using Ē3 = E3 = (− cosψ sin θ,− sinψ, cosψ cos θ)e, which is obtained from Eq. (5). Thus, the three components of
Eq. (45) can be expressed as

ω̇1 = ϕ̇ω2 +

(
1− I3

I1

)
ω2ω3, (46)

(I1 + 1)ω̇2 = −I1ϕ̇ω1 + (I3 + 1− I1)ω3ω1 − g cos θ cosψ, (47)

(I3 + 1)ω̇3 = −ω1ω2 − g sinψ, (48)

where I1,3 ≡ Ī1,3/ml
2
1 and g ≡ ḡ/l1.
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D. Motion Analysis

In this section, we examine the steady precession of the washer, which can be observed in the rotation of an ordinary
top.

The initial conditions at t = 0 are given by

ϕ̇(0) = ϕ̇0 ̸= 0, θ(0) = θ0 ̸= 0, ψ(0) = 0. (49)

We discuss the existence of a steady solution as follows:

θ(t) = θ0, ψ(t) = 0, ϕ̇(t) = ϕ̇0, θ̇(t) = ψ̇(t) = 0, θ̈(t) = ψ̈(t) = ϕ̈(t) = 0. (50)

Substitution of Eq. (50) into Eq. (39) yields the equations

ω1 = −κ1ϕ̇, ω2 = 0, ω3 = κ3ϕ̇. (51)

It follows from Eqs. (50) and (42) that κ̇i = 0(i = 1, 2, 3) because this term is proportional to θ̇ and ψ̇. Thus, the
time derivative of Eq. (39) yields

ω̇1 = −κ1ϕ̈− cos θψ̈, ω̇2 = θ̈, ω̇3 = κ3ϕ̈− sin θψ̈. (52)

Substitution of Eqs. (51) and (52) into Eqs. (46), (47), and (48) yields

−κ1ϕ̈− cos θ0ψ̈ = 0, (53)

(I1 + 1)θ̈ = κ1(I1 − (I3 + 1− I1)κ3)ϕ̇
2 − g cos θ0 cosψ0, (54)

κ3ϕ̈− sin θ0ψ̈ = 0. (55)

We observe that the steady solutions ϕ̈ = ψ̈ = 0 are consistent with Eqs. (53) and (55). Furthermore, we observe that

the steady solution θ̈ = 0 is consistent with Eq. (54) when ϕ̇20 satisfies the condition

ϕ̇20 =
gl3 cos θ0
l1κ4 sin θ0

, κ4 ≡ I1 − κ3(I3 + 1− I1).

Next, we discuss steady motion with the condition ψ0 ̸= 0. In this case, the constraint equation Eq. (33) indicates
that the movement in one direction is identical to that in the two points of contact (2PC) mode despite the single point
of contact. In the following, we find that this solution does not exist in the 1PC mode. Because κ2 = l1

l3
cosψ0 sinψ0 ̸=

0, the equation of motion is obtained as

−κ1ϕ̈− cos θ0ψ̈ = c1ϕ̇
2, (56)

(I1 + 1)(θ̈ − κ2ϕ̈) = κ1(I1 − (I3 + 1− I1)κ3)ϕ̇
2 − g cos θ0 cosψ0, (57)

κ3ϕ̈− sin θ0ψ̈ = c2ϕ̇
2 − c3, (58)

where

c1 ≡ −κ2
I1

(I1 + κ3(I1 − I3)), c2 ≡ − 1

I3 + 1
κ1κ2, c3 ≡ g

I3 + 1
sinψ0.

Eqs. (56) and (58) can be combined in a matrix form equation for ψ̈ and ϕ̈:(
−κ1 − cos θ0
κ3 − sin θ0

)(
ϕ̈

ψ̈

)
=

(
c1ϕ̇

2

c2ϕ̇
2 − c3

)
. (59)

The existence of the steady solution ψ̈ = 0, ϕ̈ = 0 in Eq. (59) requires the following relations:

κ1 sin θ0 + κ3 cos θ0 =
l1
l3

cos2 ψ0 − cos θ0 ̸= 0, (60)

c1ϕ̇
2 = 0, (61)

c2ϕ̇
2 − c3 = 0. (62)



13

Eq. (60) is the determinant of the matrix on the left hand side of Eq. (59). From the constraint equation Eq. (71)
discussed in Section IVB, we obtain

l1
l3

cos2 ψ >
1

cos θ
> 1 > cos θ, (63)

from which we find that

l1
l3

cos2 ψ − cos θ > 0

and that Eq. (60) is satisfied. The condition c1 = 0 obtained from Eq. (61) yields

I1 + κ3(I1 − I3) = 0 (64)

using κ2 ̸= 0. Substitution of ψ̈ = 0, Eq. (42), Eq. (64), and ϕ̇2 = c3
c2
, as obtained from Eq. (62), into Eq. (57) yields

(I1 + 1)θ̈ = −κ1κ3ϕ̇2 − g cos θ0 cosψ0

= g
κ3
κ2

sinψ0 − g cos θ0 cosψ0

= −g l3
l1 cosψ0

< 0,

which indicates that the steady solution θ̈ = 0 with ψ0 ̸= 0 does not exist.
After all, we find that steady precession with a constant value of ψ0 = 0, θ0 ̸= 0, ϕ̇20 = gl3 cos θ0

l1κ4 sin θ0
exists, but steady

precession with a constant value of ψ0 ̸= 0 does not exist.

IV. MOTION OF THE WASHER WITH TWO POINTS OF CONTACT

A. Movement of the Washer

We recorded a video with a high-speed camera (CASIO EX-FH20) to observe the movement of the washer. We
turned the washer by hand and recorded the video when the velocity of the washer reached terminal velocity. Fig. 11
presents sequential photographs taken at 1/105-s intervals from a video recorded at 420 fps. The washer was composed
of 0.7-mm-thick paper, and l1 = 10 mm and l2 = 2× l1 = 20 mm. The radius of the wooden rod was l3 = 4 mm. The
sequential photographs of the video indicate that it took 36 frames for the washer to rotate around the rod; therefore,
the terminal angular velocity (η̇t) was approximately 78 rad/s. Fig. 12 presents sequential photographs of a washer
with a smaller radius (l1 = 6 mm, l2 = 2× l1 = 12 mm). The time interval was the same as in Fig. 11. The sequential
photographs of the video indicate that the terminal angular velocity (η̇t) was approximately 156 rad/s. It can be seen
that the smaller the radius l1, the higher the rotation speed.
Fig. 13 displays the contact of the washer (l1 = 6 mm) with the rod. It can be seen that there was a small gap

between the washer and rod, and that they were in contact at two points. The contact points P and P̃ are the points
indicated in Fig. 14(d). The exact positions are not known; therefore, the approximate positions are indicated by
arrows in Fig. 13.

B. Constraint Conditions

When there are two points of contact, the constraint conditions of angles θ and ψ are induced from the fact that
the washer does not get stuck in the rod. Q denotes a point on the inner circle of the washer, vector rq denotes
OQ, and vector rs denotes GQ, as illustrated in Fig. 14(a). The washer is already in contact with the rod at point
P . Vector rt denotes OP , while vector r denotes GP . When we project the inner diameter of the washer and outer
diameter of the rod with radius l3 onto the plane defined by the unit vectors E1 and E2, the curved lines C1 and
C2 are obtained, respectively, as illustrated in Fig. 14(b). The situation in which the washer gets stuck in the rod is

presented in Fig. 14(c). Here, curves C1 and C2 intersect at points P̃1 and P̃2. The situation in which there are only

two points of contact is presented in Fig. 14(d). In this case, points P̃1 and P̃2 coincide with each other and become

point P̃ .
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FIG. 11. Sequential photographs of the motion of a washer with radii l1 = 10 mm and l2 = 20 mm.

FIG. 12. Sequential photographs of the motion of a washer with radii l1 = 6 mm and l2 = 12 mm.

Vector rs is parametrized by α as follows:

rs(α) = (l1 cosα, l1 sinα, 0)e (α ∈ [−π, π])
= l1(cosα cos θ,− cosα sinψ sin θ + sinα cosψ,− cosα cosψ sin θ − sinα sinψ)E .

Vector rq is given by

rq = rt − r + rs,

from which the components with respect to the frame E are obtained:

rq = rqiEi,

rq1 = l3 − l1 cos θ + l1 cosα cos θ,

rq2 = l1 sinψ sin θ(1− cosα) + l1 sinα cosψ,

rq3 = l1 cosψ sin θ − l1 cosα cosψ sin θ − l1 sinα sinψ + z.

Thus, curve C1 is parametrized by α:

C1(α) = (rq1(α), rq2(α))E1E2
,

rq1(α) = l3 − l1 cos θ + l1 cosα cos θ, (65)

rq2(α) = l1 sinψ sin θ(1− cosα) + l1 sinα cosψ, (66)

from which the curve is found to be an oval by eliminating the parameter α. When α = 0, the point on curve C1

yields

C1(0) = (l3, 0)E1E2
,
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FIG. 13. Small gap between the rod and washer with radius l1 = 6 mm and points of contact P and P̃ .

FIG. 14. Washer system with two points of contact (a) rs = GQ and rq = OQ. Curve C1 is an oval representing the inner
diameter of the washer as projected onto the plane defined by the unit vectors E1 and E2. Curve C2 is the outer diameter of
the rod. (b) Curve C1 contacts curve C2 at one point P only. (c) The washer gets stuck in the rod. Curves C1 and C2 intersect

at points P̃1 and P̃2. (d) Curves C1 and C2 contact each other at point P̃ . This is the case of two points of contact with the

condition P̃1 = P̃2 = P̃ .

which describes the point of contact P . Since points P̃1, P̃2, and P̃ are also points on curve C2, the solutions
corresponding to these points satisfy the equation

r2q1(α) + r2q2(α)− l23 = 0. (67)

Substitution of Eqs. (65) and (66) into Eq. (67) yields the equation

(1− u)V (u) = 0,

V (u) ≡ d1u+ d2 + 2b1b2
√
1− u2, (68)

where

u ≡ cosα,

d1 ≡ −(a2 + b21 − b22), d2 ≡ −2l3a+ a2 + b21 + b22,

a ≡ l1 cos θ, b1 ≡ l1 sinψ sin θ, b2 ≡ l1 cosψ.
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For ψ = 0, the situation changes from Fig. 15(a) to Fig. 15(e) as the absolute value of θ increases. Figs. 15(d) and
15(e) display the case of becoming stuck in the rod. Fig. 15(c) displays the case of two points of contact, and we find
that cosα takes the value of −1. Substitution of cosα = u = −1 and ψ = 0 into Eq. (68) yields cos θc =

l3
l1
.

FIG. 15. C1 and C2 with ψ = 0 as |θ| increases. (a) θ = 0, cos θ = 1. (b) 0 < |θ| < θc, cos θc = l3
l1
. (c) |θ| = θc. (d) θc < |θ| < π

2
.

(e) |θ| = π
2
.

For θ = 0, the situation changes from Fig. 16(a) to Fig. 16(e) as the absolute value of ψ increases. Figs. 16(c) and

16(d) display the case of getting stuck in the rod. Fig. 16(b) displays the special case in which P̃1 = P̃2 = P̃ = P at

α = 0. Substitution of α = 0 and θ = 0 into V (u) = 0 yields cosψc =
√

l3
l1
.

FIG. 16. C1 and C2 with θ = 0 as |ψ| increases. (a) 0 < |ψ| < ψc, cosψc =
√

l3
l1
. (b) |ψ| = ψc. (c) ψc < |ψ| < π

2
. (d) |ψ| = π

2
.

In the case of 0 < ψ ≤ ψc and 0 < θ ≤ θc, when equation V (u) = 0 has multiple roots, the roots correspond to the

point of contact P̃ . Squaring V (u) = 0 gives

(d21 + 4b21b
2
2)u

2 + 2d1d2u+ α2
2 − 4b21b

2
2 = 0.

The condition in which the discriminant is equal to zero gives

d21 − d22 + 4b21b
2
2 = 0. (69)

The constraint condition obtained from Eq. (69) is

l3
l1

− cos2 ψ cos θ = 0 (70)

by dividing by the factor 4l41 cos θ
(
1− l3

l1
cos θ

)
> 0 because l3

l1
< 1. The physical condition that the washer does not

get stuck in the rod leads to the inequality

l3
l1

− cos2 ψ cos θ ≦ 0. (71)
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FIG. 17. The black curve is drawn at values of l1 = 10 mm and l3 = 4 mm. Area A corresponds to the inequality l3
l1

−
cos2 ψ cos θ ≦ 0, and lA is the boundary line of area A, on which there are only two points of contact. Point q1 is on the line

with θ = 0, at which the value of ψc is given by cosψc =
√

l3
l1
. Point q2 is on the line with ψ = 0, at which the value of θc is

given by cos θc = l3
l1
.

An area satisfying Eq. (71) corresponds to A in Fig. 17, where x ≡ cosψ and y ≡ cos θ. The values of l1 and l3 are
set to l1 = 10 mm and l3 = 4 mm, respectively. The border line is lA, corresponding to Eq. (70). Points q1 and q2 are

on the line lA with y = 1 and x = 1, respectively. Point q1 has the component q1 = (cosψc =
√

l3
l1
, 1), corresponding

to Fig. 16(b), while point q2 has the component q2 = (1, cos θc =
l3
l1
) corresponding to Fig. 15(c).

C. Equations of Motion

We obtain the equations of motion of the washer at two points of contact P and P̃ without slipping, as illustrated
in Fig. 18. The position vectors of the points of contact P and P̃ are r1 and r2, respectively.

Because the washer rotates around the axis that passes through the points of contact P and P̃ , the unit vector
with respect to the direction of this axis is ẽ1, as indicated in Fig. 18(a). Axis ẽ3 is the same as e3, and axis ẽ2 is
obtained by ẽ2 = ẽ3 × ẽ1.
Vector E3p is defined by vector E3, namely, Eq. (38) projected onto the plane defined by the unit vectors e1 and

e2, as illustrated in Fig. 18(b), and is given by

E3p = (−ρ1,−ρ2, 0)e,

where ρ1 and ρ2 are defined as

ρ1 ≡ sin θ cosψ, ρ2 ≡ sinψ.

We find that ẽ1 is a unit vector with the opposite direction to that of E3p. Thus, ẽ1 is obtained as

ẽ1 =
1

ρ
(ρ1, ρ2, 0)e,

where

ρ ≡
√
ρ21 + ρ22 =

√
1− ρ23, ρ3 ≡ cos θ cosψ.
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FIG. 18. Washer with two points of contact with the rod. (a) The two points of contacts are P and P̃ , while r1 and r2 are the

position vectors at P and P̃ , respectively. The direction of ẽ1 is parallel to the direction from P̃ to P . The axis ẽ3 is the same
as e3. (b) Vector E3p is defined by the vector E3

.

It follows from ẽ2 = e3 × ẽ1 that ẽ2 is calculated as

ẽ2 =
1

ρ
(−ρ2, ρ1, 0)e.

The relations between ẽi, ei, and E are obtained as follows:

ei = R̃ij ẽj , ẽi = R̃−1
ij ej , (72)

R̃ =
1

ρ

 ρ1 −ρ2 0
ρ2 ρ1 0
0 0 ρ

 , R̃−1 =
1

ρ

 ρ1 ρ2 0
−ρ2 ρ1 0
0 0 ρ

 ,

Ei = R1ψijR2θjkR̃klẽl

=
1

ρ

 cos θρ1 − cos θρ2 sin θρ
cos2 θ cosψ sinψ sin θ sinψ cos θρ

−ρ2 0 ρ3ρ


ij

ẽj . (73)

The components of vectors r1 and r2 with respect to frame ẽi are obtained using Eq. (72):

r1 = (l1, 0, 0)e =
l1
ρ
(ρ1,−ρ2, 0)ẽ, r2 = − l1

ρ
(ρ1, ρ2, 0)ẽ. (74)

The forces f1 and f2 acting at the points of contact P1 and P2, respectively, have components denoted by

fi = ml1(f̃i1, f̃i2, f̃i3)ẽ.

The components of the torque N = Ñiẽi are obtained as

N = r1 × f1 + r2 × f2,

Ñ1 = −ml
2
1

ρ
ρ2(f̃13 + f̃23),

Ñ2 = −ml
2
1

ρ
ρ1(f̃13 − f̃23),

Ñ3 = −ml
2
1

ρ
(ρ1(−f̃12 + f̃22)− ρ2(f̃11 + f̃21)).
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We obtain the angular velocity components as follows: ω = (ω̃1, ω̃2, ω̃3)ẽ. Under the no-slip condition, velocity vg is
expressed as

vg = r1 × ω = r2 × ω,

from which we obtain the relation

(r1 − r2)× ω = 0. (75)

Furthermore, since

r1 − r2 =
l1
ρ
(2ρ1, 0, 0)ẽ (76)

from Eq. (74), we obtain

(r1 − r2)× ω =
l1
ρ
(0,−2ρ1ω̃3, 2ρ1ω̃2)ẽ. (77)

From Eqs. (75) and (77), we find that

ω̃2 = ω̃3 = 0. (78)

The equation (r1 − r2) × ω = 0 signifies that the direction of (r1 − r2) is parallel to the direction of ω; thus,
(r1 − r2) is the rotation axis. Axis ẽ1 is parallel to the direction of (r1 − r2); thus, ω̃1 has a nonzero value, and the
other directions have zero components: ω̃2 = ω̃3 = 0.
Furthermore, we can demonstrate that angles ψ and θ have constant values in the 2PC mode under the no-slip

condition. ω̃2 and ω̃3 are the functions of variables ϕ̇, ψ̇, θ̇, and η̇ as follows:

ω̃2 =
1

ρ
(−ρ2ω1 + ρ1ω2)

= η̇(ρ2 sin θ cosψ − ρ1 sinψ) + ρ1θ̇

= ρ1θ̇, (79)

ω̃3 = ω3 =
η̇

cos θ
(− l3
l1

+ cos2 ψ cos θ) + ψ̇ sin θ

= ψ̇ sin θ, (80)

where we use the expression of ωi in Eq. (39), the relation equation between e and ẽ in Eq. (72), and the constraint

condition in Eq. (70). From Eq. (79), Eq. (80), and ω̃2 = ω̃3 = 0 obtained in Eq. (78), we find that ψ̇ = θ̇ = 0; thus,
ψ and θ have constant values in the 2PC mode.

It follows from ψ̇ = θ̇ = 0 that ω1 = −η̇ sin θ cosψ and ω2 = −η̇ sinψ, from which we obtain

ω̃1 =
1

ρ
(ρ1ω1 + ρ2ω2)

= − η̇
ρ
(ρ1 sin θ cosψ + ρ2 sinψ) = −η̇ρ. (81)

Under the no-slip condition, the angular velocity is as follows:

ω = (−η̇ρ, 0, 0)ẽ. (82)

The angular momentum L = L̃iẽi is obtained using Eqs. (22) and (72):

L̃1 = Ī1ω̃1, L̃2 = L̃3 = 0.

It follows from Eqs. (23) and (72) that the time derivative of the angular momentum is

d

dt
L = (Ī1 ˙̃ω1, Ī1ϕ̇ω̃1, 0)ẽ = −Ī1(ρη̈, ρρ3η̇2, 0)ẽ,
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where we use Eq. (31), Eq. (81), and ρ̇ = 0 because ψ̇ = θ̇ = 0. Thus, the equations of motion with respect to the
angular momentum d

dtL = N can be expressed as

I1ρη̈ =
1

ρ
ρ2(f̃13 + f̃23), (83)

I1ρρ3η̇
2 =

1

ρ
ρ1(f̃13 − f̃23), (84)

0 = ρ1(−f̃12 + f̃22)− ρ2(f̃11 + f̃21). (85)

The equation of motion of the center of mass is given by

m
d2

dt2
rg = f1 + f2 −mḡE3.

The acceleration d2

dt2 rg is calculated from Eq. (34) as follows:

d2

dt2
rg = −l1ρ2(η̈ẽ3 + ρη̇2ẽ2).

The components of E3 in frame ẽ are obtained from Eq. (73) as E3 = (−ρ, 0, ρ3)ẽ. Consequently, the equations of
motion with respect to the center of mass are given by

0 = f̃11 + f̃21 + gρ, (86)

ρρ2η̇
2 = −f̃12 − f̃22, (87)

ρ2η̈ = −f̃13 − f̃23 + gρ3. (88)

Eqs. (83) and (84) can be combined in the equations for f̃13 and f̃23:

f̃13 =
I1ρ

2

2

(
C0

ρ2
+
ρ3η̇

2

ρ1

)
, f̃23 =

I1ρ
2

2

(
C0

ρ2
− ρ3η̇

2

ρ1

)
. (89)

Substitution of Eq. (86) into Eq. (85) and the use of Eq. (87) yield

f̃12 = −ρρ2
2

(
η̇2 − g

ρ1

)
, f̃22 = −ρρ2

2

(
η̇2 +

g

ρ1

)
. (90)

For each force, f̃11 and f̃21 are not given by the equations of motion. Since only the sum is obtained by Eq. (86) as

f̃11 + f̃21 = −gρ, we introduce a parameter δ and set the force f̃11 and f̃21 as follows:

f̃11 = −gδρ, f̃21 = −g(1− δ)ρ. (91)

The forces exerted by the rod are illustrated in Fig. 19.

D. Motion Analysis

We discuss the motion of the washer based on the forces obtained above. In the following discussion, we assume
that the angles have a constant positive value:

θ0 > 0, ψ0 > 0, (92)

as illustrated in Fig. 8(4) and Fig. 18.
Since angles ϕ and θ are constant values, the components of the center of mass with respect to frame E, given by

Eq. (29), are also constant values, from which the motion of the center of mass projected onto the plane of Ē1 and

Ē2 is found to be a circular motion with angular velocity η̇. The centripetal force is f̃12 + f̃22, given by

f̃12 + f̃22 = −ρρ2η̇2.
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FIG. 19. Forces exerted by the rod. (a) Dotted lines represent f1 and f2. f̃13 and f̃23 are represented by Eq. (89) when f̃23
has a negative value. We assume that δ = 0.5; then, f̃11 = f̃21 < 0 because only the sum of these forces is given. (b) f̃12 and

f̃22 are represented by Eq. (90).

Substitution of Eq. (88) into Eq. (83) yields the equation

η̈ = C0, C0 ≡ gρ2ρ3
ρ22 + I1ρ2

. (93)

It follows from Eq. (92) that ρ2 > 0 and ρ3 > 0; thus, C0 has a positive constant value. The acceleration with respect
to η is constant, from which the motion of the washer is identical to free fall motion. Thus, at time t = 0, when the
washer begins to make contact at two points, η(t) can be obtained as

η(t) = η(0) + η̇(0)t+
1

2
C0t

2, (94)

where η(0) and η̇(0) are the initial values. The constraint condition in Eq. (33) indicates that the locus of the point
of contact is a spiral with a pitch given by the angle ψ. The angular velocity increases because the potential energy
is converted into kinetic energy as in free fall. In practice, the angular velocity reaches a constant value (terminal
velocity η̇t) due to energy dissipation caused by factors such as rolling friction, air viscosity, and sound as follows:

η(t) = η(0) + η̇tt. (95)

Even if the gravity constant is equal to zero, g = 0(C0 = 0), angle η(t) increases linearly with time t from Eq. (94).
This motion can be observed when the rod is placed horizontally and the washer is initially rotated by hand. To be
precise, even if the rod are parallel, gravity acts on the washer, but there is no gravity component in the direction of
motion.

We simulated the motion of a washer with l1 = 10 mm, l2 = 20 mm, and l3 = 4 mm using Eqs. (7), (30), (33), and
(95). In this simulation, we required constant values of η̇t, ψ, and θ, and these values were obtained as follows. The
value of η̇t ∼ 78 rad/s was obtained as described in Section IVA. By observing how the thin lines drawn on the washer
every 10 degrees moved, the increase in the angle ϕ was determined. It can be seen from video by which Fig. 11 is
obtained that ϕ increased by almost π rad in the time (36 frames) that η increased by almost 2π rad. Under the
no-slip condition Eq. (32), the value of ψ was obtained: approximately 0.64 rad. Using the 2PC constraint condition
Eq. (70), the value of θ was obtained: approximately 0.9 rad. For the numerical simulation, the NDSolve command
in Mathematica (Wolfram Research Inc.) was used. The Mathematica file is available on the author’s website [16].
Fig. 20(a) is identical to Fig. 11(a). Fig. 20(b) presents the numerical simulation, and it can be seen that the behavior
is very similar to that displayed in Fig. 20(a).

The washer falls with θ > 0, ψ > 0, which can be understood by moving the rod and washer by hand. As displayed
in Fig. 21, when rotating the rod in the direction of arrow A using the left hand (washer rotates in the opposite
direction) and at the same time rotating the washer in the direction of arrow B using the right hand, it can be seen
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FIG. 20. Comparison of photographs and simulation results of washer motion. (a) The same sequential photographs as in
Fig. 11. (b) Sequential images of the washer motion obtained by numerical simulation.

FIG. 21. Rotation of the rod in direction A using the left hand and of the washer in direction B using the right hand. The
washer moves downward as a result.

that the washer moves downward. The combination of the rotation B and opposite rotation of A yields ω̃1 ̸= 0 and
ω̃2,3 = 0, as expressed in Eq. (82).
If the sign of angle ψ > 0 changes to ψ < 0 for some reason, the position velocity ż becomes positive with

ż = −l3η̇ tanψ > 0. Then, the phenomenon of the falling washer suddenly moving upward can be observed. This
phenomenon can be seen in the ”rock the baby” movement, which is a trick performed with chatter ring. This
phenomenon has been reported in the case of two washers colliding [17].

V. CONCLUSIONS AND DISCUSSION

To understand the motion of the small rings of the chatter ring, our model, which consists of a straight rod and
a washer ring, is analyzed under the no-slip condition. The equations of motion and constraint conditions in both
the 1PC and 2PC modes are obtained. In the 1PC mode, the motion of the washer is similar to that of a hula hoop,
and the steady precession of the washer occurs under the condition θ(0) ̸= 0, ψ(0) = 0 but not under the condition
θ(0) ̸= 0, ψ(0) ̸= 0. In the 2PC mode, the locus of the point of contact is a spiral with a pitch given by the angle ψ,
and the acceleration with respect to η is found to be constant, from which the motion of the washer is identical to
free fall motion. The motion of the small ring of the chatter ring is similar to that of the washer in the 2PC mode as
observed with a high-speed camera. Thus, the motion of a hula hoop is different from that of the chatter ring. The
motion of the washer consists of rotation around the axis that passes through the points of contact P and P̃ . The
motion of the center of mass projected onto the horizontal plane defined by unit vectors Ē1 and Ē2 is a circle, and the
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angular velocity increases because the potential energy is converted into kinetic energy in the same way as free fall.
In practice, the angular velocity reaches a constant value via energy dissipation due to rolling friction, air viscosity,
sound, and other factors. The components of the forces received from the rod at the points of contact, which are
normal to the plane of the washer, induce part of the acceleration η̈. The sum of the components of the forces parallel
to the horizontal plane are centripetal forces, which induce circular motion of the center of mass projected onto the
plane defined by unit vectors Ē1 and Ē2.
In Section IVA, the motion of a washer with l1 = 6 mm and l1 = 10 mm is described. However, under the condition

of l2 = 2l1, other washers with l1 = 5 mm, 8 mm, 12 mm, 14 mm, 15 mm, 16 mm and 18 mm were also created and
turned. At l1 = 5 mm, downward motion was observed with almost no rotation, while at l1 = 16 mm and 18 mm,
downward motion with slipping and rotation was observed. Videos are available on the author’s website [16].

In addition, there are two non-dimensional parameters related to the size of the washer and rod: l2/l1 and l3/l1.
There seems to be a range of the parameters that turns well and does not slip. This has also been reported in a
previous paper [13]. Future work will clarify the reasons why the washer turns or does not turn well.
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