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Pairs of ternary quadratic forms

Let V be the vector space of pairs of ternary quadratic forms over C
in three variables v = (v1, v2, v3). For x = (x1, x2) ∈ V , write

xk(v) =
∑

1≤i≤j≤3
xk,ijvivj (k = 1, 2)

We identify xk by symmetric matrix as usual. We define a binary
cubic form Fx(u) in variables u = (u1, u2) by

Fx(u) = 4 det(u1x1 − u2x2) = au3
1 + bu2

1u2 + cu1u
2
2 + du3

2.

The coefficients a, b, c, d are homogeneous polynomials of xk,ij of
degree 3. Put

Disc(x) = Disc(Fx) = 18abcd+ b2c2 − 4ac3 − 4b3d− 27a2d2.

Disc(x) is a homogeneous polynomial of xk,ij of degree 12.
J. Nakagawa (Joetsu Univ. Edu.) Pairs of ternary quadratic forms June 2017 2 / 32



Group action

The group G = SL3(C)×GL2(C) acts on V :
g = (g1, g2) ∈ G, x = (x1, x2) ∈ V ,

g · x = (p(g1x1) + q(g1x2), r(g1x1) + s(g1x2)),

g2 =

(
p q
r s

)
, (g1xk)(v) = xk(vg1). Then we have

Disc(g · x) = (det g1)8(det g2)6 Disc(x).

Put S = {x ∈ V : Disc(x) = 0}. Then S is an irreducible
hypersurface and V r S is a single G-orbit. Hence (G, V ) is a
prehomogeneous vector space and Disc(x) is its fundamental relative
invariant.
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Zero(x)

For any x ∈ V r S, put

Zero(x) = {v ∈ P2(C) : x1(v) = x2(v) = 0}.

Then Zero(x) is a finite set consisting of four points.

p1

p3
p4

p2

The set VR r SR decomposes into three GR-orbits V1, V2, V3. V1, V2

and V3 are the set of x ∈ VR r SR such that the cardinality of
Zero(x) ∩ P2(R) equals 4, 2, and 0, respectively.
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Dual lattice

Let L ⊂ VR be the lattice of pairs of integral ternary quadratic forms.
For x = (x1, x2), y = (y1, y2) ∈ V , put 〈x, y〉 = Tr(x1y2) + Tr(x2y1)
(Tr is the trace of matrices). Then the dual lattice L̂ of L with
respect to this pairing is the set of pairs of integral symmetric
matrices of degree 3. Put Γ1 = SL3(Z), Γ2 = GL2(Z). The group
Γ = Γ1 × Γ2 acts on L and L̂. For any y = (y1, y2) ∈ L̂, put

F̂y(u) = det(u1y1 − u2y2) = (1/4)Fy(u).

F̂y(u) is an integral binary cubic form. We put

Disc∗(y) = Disc(F̂y) = 2−8 Disc(Fy).
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Zeta functions

We denote by Γx the isotropy group of x ∈ Lr S in Γ. Then Γx is a
finite group of order at most 72. Put µ(x) = 1/|Γx|.
The zeta functions ξi(L, s), ξi(L̂, s) (i = 1, 2, 3) are define by

ξi(L, s) =
∑

x∈Γ\L∩Vi

µ(x)

|Disc(x)|s
=
∞∑
n=1

ai((−1)i−1n)

ns
,

ξi(L̂, s) =
∑

y∈Γ\L̂∩Vi

µ(y)

|Disc∗(y)|s
=
∞∑
n=1

âi((−1)i−1n)

ns
,

where

ai(n) =
∑

x∈Γ\(L∩Vi)
Disc(x)=n

µ(x), âi(n) =
∑

y∈Γ\(L̂∩Vi)
Disc∗(y)=n

µ(y).
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Functional equations

The zeta functions ξi(L, s), ξi(L̂, s) converge absolutely for
<(s) > 1. This was proved in Yukie’s book (‘Shintani Zeta
functions’, Cambridge Univ. Press, 1993). The functional equations

(ξi(L, 1− s))

= Γ(s)4Γ

(
s− 1

6

)2

Γ

(
s+

1

6

)2

Γ

(
s− 1

4

)2

Γ

(
s+

1

4

)2

× 28s36sπ−12s(u∗ji(s))(ξj(L̂, s)).

were proved by Sato-Shintani (On zeta functions associated with
prehomogeneous vector spaces, Ann. of Math. 100 (1974),
131–170). Here u∗ji(s)’ are polynomials of q = exp(π

√
−1s) and q−1

of degree at most 6.
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Conjecture

We present the following conjecture which is a quartic analogue of
Ohno conjecture (Y. Ohno, A conjecture on coincidence among the
zeta functions associated with the space of binary cubic forms, Amer.
J. Math. 119 (1997), 1083–1094.
J. Nakagawa, On the relations among the class numbers of binary
cubic forms, Invent. math. 134, 101-138 (1998)).

Conjecture 1.1

ξ1(L̂, s) = ξ1(L, s) + ξ3(L, s),

ξ2(L̂, s) = 2ξ2(L, s),

ξ3(L̂, s) = 3ξ1(L, s)− ξ3(L, s).
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Results

By a ring of rank n we mean a commutative ring with unit that is
free of rank n as a Z-module. It is called nondegenerate if its
discriminant is non-zero.
For any integral binary cubic form F (u) = au3

1 + bu2
1u2 + cu1u

2
2 +du3

2,
we denote by R(F ) the cubic ring associated with F (u) by
Delone-Faddeev correspondence. R(F ) is a free Z-module having
Z-basis {1, ω, θ} and the multiplication table

ω2 = −ac+ bω − aθ,
θ2 = −bd+ dω − cθ,
ωθ = −ad.

(1.1)

The correspondence F 7→ R(F ) gives a discriminant preserving
bijection between the set of GL2(Z)-orbits of integral binary cubic
forms and the set of isomorphism classes of cubic rings.
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For any nondegenerate cubic ring O, we denote by L(O) and L̂(O)
the set of x ∈ L such that R(Fx) ∼= O and the set of y ∈ L̂ such
that R(F̂y) ∼= O, respectively. Further we put Li(O) = L(O) ∩ Vi,
L̂i(O) = L̂(O) ∩ Vi (i = 1, 2, 3). For any étale algebra over Q, we
denote by Ok the maximal order of k.

Theorem 1

Let k be a cubic field and O be an order of k such that the index
(Ok : O) is odd and square free. Then the following relations hold:∑
y∈Γ\L̂1(O)

µ(y) =
∑

x∈Γ\L1(O)

µ(x) +
∑

x∈Γ\L3(O)

µ(x) (Disc(k) > 0),

∑
y∈Γ\L̂2(O)

µ(y) = 2
∑

x∈Γ\L2(O)

µ(x) (Disc(k) < 0),

∑
y∈Γ\L̂3(O)

µ(y) = 3
∑

x∈Γ\L1(O)

µ(x)−
∑

x∈Γ\L3(O)

µ(x) (Disc(k) > 0).

J. Nakagawa (Joetsu Univ. Edu.) Pairs of ternary quadratic forms June 2017 10 / 32



By Theorem 1 and applying Gauss’s genus theory on the 2-rank of
the ideal class groups of quadratic fields for the reducible algebras
k = Q⊕Q(

√
n), we obtain

Theorem 2

If n is a discriminant of a quadratic field, then the following relations
hold:

â1(n) = a1(n) + a3(n) (n > 0),

â2(n) = 2a2(n) (n < 0),

â3(n) = 3a1(n)− a3(n) (n > 0).
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Triples (O, a, δ)
We consider triples (O, a, δ), where O is a nondegenerate cubic ring,
a is a fractional ideal of O and δ is an invertible element of
k = O⊗Z Q such that a2 ⊂ δO and Nk/Q(δ) = NO(a)2. Here NO(a)
is the norm of a as a fractional O-ideal, i. e. NO(a) = (O : a) for
a ⊂ O. Two such triples (O, a, δ) and (O′, a′, δ′) are called
equivalent if there exists an isomorphism φ : O → O′ and
κ ∈ O′ ⊗Z Q such that a′ = κφ(a), δ′ = κ2φ(δ). M. Bhargava
proved the following theorem (Higher composition laws II, Ann. of
Math. 159 (2004), 865–886).

Thorem 2.1 (Bhargava)

There is a canonical bijection between the set of nondegenerate
Γ-orbits on L̂ and the set of equivalence classes of triples (O, a, δ).
Under this bijection, the discriminant of a pair of integral matrices of
degree three equals the discriminant of the corresponding cubic ring.
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Bijection of Theorem 2.1

Let O be a nondegenerate cubic ring and having Z-basis {1, ω, θ}
and multiplication table (1.1) with a, b, c, d ∈ Z. Let a be a fractional
O-ideal and δ be an invertible element of k = O ⊗Z Q such that
a2 ⊂ δO and Nk/Q(δ) = NO(a)2. We take a Z-basis {α1, α2, α3} of
the ideal a having the same orientation as {1, ω, θ}. Since a2 ⊂ δO,
there exist integers aij, bij and cij such that

(2.1) αiαj = δ(cij + bijω + aijθ).

We put A = (aij), B = (bij). Then we have

F̂(A,B)(u) = au3
1 + bu2

1u2 + cu1u
2
2 + du3

2.

The correspondence (O, a, δ) 7→ Γ · (A,B) gives the bijection of
Theorem 2.1.
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Isotropy group Γ(A,B)

We denote by Γ(A,B) the isotropy group in Γ of a nondegenerate pair

(A,B) ∈ L̂.

Corollary 2.2 (Bhargava)

For any nondegenerate pair (A,B) ∈ L̂, there exists a
homomorphism Γ(A,B) → Aut(O) with kernel isomorphic to U+

2 (O0).
Here (O, a) is the pair corresponding to (A,B) as in Theorem 2.1,
O0 = EndO(a) is the endomorphism ring of a, and U+

2 (O0) denotes
the group of units of O0 having order dividing 2 and positive norm.

Remark 2.3

The original statement of Corollary 2.2 is
Γ(A,B)

∼= U+
2 (O0) o Aut(O), which is not correct. So we have given

a weaker statement than the original one.
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L̂(O,O0)

Let k be an étale cubic algebra over Q and let O be an order of k
with square free index f = (Ok : O). By a theorem of elementary
divisors, there exists a basis {1, ω, θ} of Ok with ω, θ ∈ k× such that
{1, fω, θ} is a basis of O and the multiplication in Ok is given by
(1.1). We note that f divides d.
Let (O, a, δ) be a triplet corresponding to (A,B) ∈ L̂(O) and put
O0 = EndO(a), then O ⊂ O0 ⊂ Ok. We set

L̂(O) = {(A,B) ∈ L̂ : R(F̂(A,B)) ∼= O},
L̂(O,O0) = {(A,B) ∈ L̂(O) : EndO(a) = O0},

L̂(O) =
⋃

O⊂O0⊂Ok

L̂(O,O0).
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Γ1-orbits and Γ-orbits

We put

L̂(F,O0) = {(A,B) ∈ L̂(O,O0) : F̂(A,B) = F}.

For any (A,B) ∈ L̂(O,O0), there exists an element γ2 ∈ Γ2 such
that F̂γ2(A,B) = F . Hence we have a natural surjective mapping

Γ1\L̂(F,O0)→ Γ\L̂(O,O0). By Corollary 2.2, we have

Lemma 2.4

The cardinality of the inverse image of Γ · (A,B) is
|Aut(O)| · |U+

2 (O0)|/|Γ(A,B)|. Hence

|Γ1\L̂(F,O0)| =
∑

(A,B)∈Γ\L̂(O,O0)

|Aut(O)| · |U+
2 (O0)|

|Γ(A,B)|
.
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Ideal j(O,O0)

Let (O, a, δ) be a triplet and put O0 = EndO(a). Since
O ⊂ O0 ⊂ Ok and Ok/O ∼= Z/fZ, O0 = [1, gω, θ] for some positive
divisor g of f . We write f = gh.
The conductor f of O (the maximal Ok-ideal contained in O) is given
by f = [f, fω, θ]. Similarly the conductor g of O0 is given by
g = [g, gω, θ]. We note that O = Z + f, O0 = Z + g.
We put j = [h, fω, θ]. Then j ⊂ O and j is an O0-ideal. Since
f = gh is square free, g and h are coprime to each other. Hence
j + g = O0. We put h = [h, hω, θ] and h′ = [h, ω, θ + c]. Then h and
h′ are Ok-ideals such that hh′ = hOk. So h is an invertible Ok-ideal.
Further we have jOk = h. This implies that j is an invertible
O0-ideal. It is easy to see that j is the largest O0-ideal contained in
O. So we write j = j(O,O0).
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Fröhlich’s result

Let R be a nondegenerate ring of rank n. We say that R is weakly
self dual if every proper R-ideal a (EndR(a) = R) is an invertible
R-ideal. Since the index g = (Ok : O0) is square free, the ring O0 is
weakly self dual by a result of Fröhlich (Invariants for modules over
commutative separable orders, Quart. J. Math. Oxford (2) 16
(1965), 193–232.). Hence each proper O0-ideal is an invertible
O0-ideal. In particular a is an invertible O0-ideal.

NO0(a) = (O0 : O)NO(a) = hNO(a).

By a result of Fröhlich, a proper O0-ideal b is invertible if and only if
(Okb : b) = (Ok : O0). Hence for any proper integral O0-ideal b, we
have

NO0(b) = (O0 : b) =
(Ok : Okb)(Okb : b)

(Ok : O0)
= (Ok : Okb) = N(Okb).
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δ−1a2 = j(O,O0)

This implies that the norm NO0 is multiplicative for proper O0-ideals.
In particular, we have

NO0(δ
−1a2) = Nk/Q(δ)−1NO0(a)2 = Nk/Q(δ)−1h2NO(a)2 = h2.

Since j = [h, ghω, θ] and O0 = [1, gω, θ], we have NO0(j) = h2. Then
the inclusion δ−1a2 ⊂ j implies δ−1a2 = j.
Conversely, if a is an invertible O0-ideal and δ ∈ k× has positive norm
such that δ−1a2 = j, then the triplet (O, a, δ) is as in Theorem 2.1.
We denote by IO0 the group of invertible fractional O0-ideals. We put

I (O,O0) = {(a, δ) ∈ IO0 × k× : δ−1a2 = j(O,O0), Nk/Q(δ) > 0}.

We say that two elements (a, δ) and (a′, δ′) in I (O,O0) are
equivalent if there exists an element κ ∈ k× such that a′ = κa and
δ′ = κ2δ.
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For any (a, δ) ∈ I (O,O0), the correspondence (a, δ) 7→ Γ1 · (A,B)
induces a bijection I (O,O0)/ ∼→ Γ1\L̂(F,O0), where the
equivalence class of (O, a, δ) corresponds to Γ · (A,B) in Theorem
2.1.
We denote by X(O,O0) the subgroup of ClO0 /Cl2O0

generated by
the ideal class of j(O,O0). By the definition of I (O,O0),

I (O,O0) 6= ∅ if and only if X(O,O0) is trivial. We denote by Cl
(2)
O0

the two torsion subgroup of ClO0 . We have the following equation

|I (O,O0)/ ∼ | = |Cl
(2)
O0
|(U+(O0) : U+(O0)2) (2− |X(O,O0)|).

By Lemma 2.4, we have∑
(A,B)∈Γ\L̂(O,O0)

1

|Γ(A,B)|
=

(U+(O0) : U+(O0)2)

|Aut(O)| |U+
2 (O0)|

|Cl
(2)
O0
|

× (2− |X(O,O0)|).
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If Disc(k) > 0, then L̂(O,O0) is decomposed into two subsets
L̂1(O,O0) and L̂3(O,O0). Using the narrow ideal class group
ClO0,+, we obtain

∑
(A,B)∈Γ\L̂1(O,O0)

1

|Γ(A,B)|
=

(U+(O0) : U+(O0)2)

23|Aut(O)| |U2(O0)|
|Cl

(2)
O0,+
|

× (2− |X+(O,O0)|).

Here U+(O0) denotes the group of totally positive units in O0 and
U2(O0) denotes the group of units in O0 having order dividing 2.
X+(O,O0) is the subgroup of ClO0,+ /Cl2O0,+

generated by the ideal
class of j(O,O0).
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Proposition 2.5

If Disc(k) > 0, then∑
y∈Γ\L̂1(O,O0)

µ(y)

=
(U+(O0) : U+(O0)2) · |U2(O0)|

23|Aut(O)| · |U+
2 (O0)|

|Cl
(2)
O0,+
| (2− |X+(O,O0)|),∑

y∈Γ\L̂1(O,O0)
µ(y) +

∑
y∈Γ\L̂3(O,O0)

µ(y)

=
(U+(O0) : U+(O0)2)

|Aut(O)| · |U+
2 (O0)|

|Cl
(2)
O0
| (2− |X(O,O0)|),

otherwise∑
y∈Γ\L̂2(O,O0)

µ(y) =
(U+(O0) : U+(O0)2)

|Aut(O)| · |U+
2 (O0)|

|Cl
(2)
O0
| (2− |X(O,O0)|).
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SL2-invariants of pairs of ternary quadratic forms

Let (A,B) be a pair of integral ternary quadratic forms and write

A(v) =
∑

1≤i≤j≤3
aijvivj, B(v) =

∑
1≤i≤j≤3

bijvivj.

We put aji = aij, bji = bij and define λijk` = λijk`(A,B) by

(3.1) λijk`(A,B) =

∣∣∣∣ aij bij
ak` bk`

∣∣∣∣ .
For any permutation (i, j, k) of (1, 2, 3), we put

ciii = ±λikij + Ci, cjii = ±λiiik,
ciij = ±(1/2)λikjj + (1/2)Cj, ckij = ±λjjii .

Here ± denotes the signature of the permutation (i, j, k) and
C1 = λ23

11, C2 = −λ13
22, C3 = λ12

33. Then ckij ∈ Z for k > 0. We put

(3.2) c0
ij =

∑3

r=1
(crjkc

k
ri − crijckrk).
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Quartic rings and pairs of ternary quadratic forms

Let Q(A,B) be a free Z-module with basis {α0 = 1, α1, α2, α3} and
the multiplication of Q(A,B) is given by

(3.3) αiαj =
∑3

k=0
ckijαk (i, j ∈ {1, 2, 3}).

Then Q(A,B) becomes a quartic ring. We defined an integral binary
cubic form F(A,B)(u) in u = (u1, u2) by 4 det(u1A− u2B). The
discriminant of Q(A,B) is equal to Disc(A,B) = Disc(F(A,B)). We
put R(A,B) = R(F(A,B)). Then the discriminant of R(A,B) is also
equal to Disc(A,B).
For any quartic ring Q and for an element x ∈ Q, we denote by
x, x′, x′′, x′′′ the ‘conjugates’ of x. We put φ(x) = xx′ + x′′x′′′. Then
all φ(x) are contained in some cubic ring Rinv(Q). A cubic resolvent
ring of Q is a cubic ring R such that Disc(R) = Disc(Q) and
R ⊃ Rinv(Q).
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HCL III

Bhargava proved the following theorem (Higher composition laws III,
Ann. of Math. 159 (2004), 1329–1360.).

Thorem 3.1 (Bhargava)

The correspondence (A,B) 7→ (Q(A,B), R(A,B)) induces a
canonical bijection between the set of Γ-orbits of nondegenerate pairs
of integral ternary quadratic forms and the set of isomorphism classes
of pairs (Q,R), where Q is a nondegenerate quartic ring and R is a
cubic resolvent ring of Q.

Corollary 3.2 (Bhargava)

Every quartic ring has a cubic resolvent ring. A primitive quartic ring
has a unique cubic resolvent ring up to isomorphism. In particular,
every maximal quartic ring has a unique cubic resolvent ring.
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Γ(A,B) and Aut(Q(A,B)

We call (A,B) primitive if gcd(λijk`(A,B)) = 1.

Proposition 3.3

For any nondegenerate pair (A,B) of integral ternary quadratic
forms, there exists an injective group homomorphism
Γ(A,B) → Aut(Q(A,B)). Further if (A,B) is primitive, then the
homomorphism is an isomorphism.

Hence we have µ(A,B) = 1/|Γ(A,B)| = 1/|Aut(Q(A,B))| if (A,B)
is primitive.
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Relative discriminant Disc(k6/k)

Let k be a non-Galois cubic field and O be an order of k such that
the index f = (Ok : O) is odd and square free. Let K be an
S4-quartic field and assume that an order Q of K has a cubic
resolvent ring isomorphic to O. We denote by K̃ the Galois closure
of K. Let k6 be the non-Galois sextic field such that k ⊂ k6 ⊂ K̃
and k6 = k(

√
α) for some α ∈ k× with Nk/Q(α) = a2, a ∈ Q×.

Then the norm of the relative discriminant N(Disc(k6/k)) = g2 for
some g ∈ N and Disc(K) = g2 Disc(k). We put h = (OK : Q).
Then Disc(Q) = Disc(O) = f 2 Disc(k) implies f = gh.
We denote by f the conductor of O. Then N(f) = f 2. For each
prime divisor p of f , we denote by fp the p-part of f and put
g =

∏
p|g fp and h =

∏
p|h fp. We can prove that g = Disc(k6/k).

Moreover the conductor of the unique cubic resolvent ring of OK is g.
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Quartic rings Q having cubic resolvent ring O

We denote by aK(h) the number of quartic rings Q contained in K
having cubic resolvent ring isomorphic to O. We denote by H the
subgroup of Ik(g) corresponding to the quadratic extension k6/k by
class field theory and χ the character of Ik(g) such that kerχ = H.
Here Ik(g) is the group of fractional ideals of k which are relatively
prime to g. We can prove the following formula.

(4.1) aK(h) =
∏
p|h

(1 + χ(fp)).
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If Disc(k) < 0, then the number of quartic rings Q with fixed cubic
resolvent ring O is given by the sum

(4.2)
∑
g|f

∑
K∈Kk(g)

aK(h) =
∑
g|f

∑
K∈Kk(g)

∏
p|h

(1 + χK(fp)),

where we denote by Kk(g) the set of isomorphism classes of quartic
fields K satisfying the following conditions:

(a) The normal closure K̃ of K over Q has Galois group S4 and
contains k.

(b) The unique cubic resolvent ring of the maximal order OK is
isomorphic to O0 = Z + g.

(c) K is totally real if Disc(k) > 0.

If Disc(k) > 0, then the sum (4.2) gives the number of such quartic
rings contained in some totally real S4-quartic fields.
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If Disc(k) > 0, we denote by Kk(gf∞) the set of isomorphism classes
of quartic fields K satisfying the conditions (a) and (b) above
(including totally imaginary fields). If Disc(k) > 0, then the number
of quartic rings contained in some quartic fields with fixed cubic
resolvent ring O is given by

(4.3)
∑
g|f

∑
K∈Kk(gf∞)

aK(h) =
∑
g|f

∑
K∈Kk(gf∞)

∏
p|h

(1 + χK(fp)).

By class field theory and quadratic reciprocity laws over the cubic
field k, we obtain the following formulae.∑

g|f

|Kk(g)| = |Cl
(2)
O | − 1,

∑
g|f

|Kk(gf∞)| = |Cl
(2)
O,+ | − 1.

(4.4)
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We can rewrite the right hand sides of (4.2) and (4.3) so that we
finally obtain the following formulae:∑

g|f

∑
K∈Kk(g)

aK(h) =
∑
g|f

|Cl
(2)
Rg
|(2− |X(O, Rg)|)− 2ω(f),(4.5)

∑
g|f

∑
K∈Kk(gf∞)

aK(h) =
∑
g|f

|Cl
(2)
Rg ,+
|(2− |X+(O, Rg)|)− 2ω(f)(4.6)

(Disc(k) > 0).

Here ω(f) is the number of distinct prime divisors of f and
Rg = Z + g.
We see that 2ω(f) equals the number of quartic rings contained in the
reducible algebra Q⊕ k having cubic resolvent ring O.
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We write x = (A,B) ∈ L(O), µ(x) = 1/|Γx|. By Proposition 3.3,
µ(x) = 1/|Aut(Q(A,B))| = 1 . It follows from Theorem 3.1,
Corollary 3.2, (4.5) and (4.6) that if Disc(k) > 0, then

∑
x∈Γ\L1(O)

µ(x) =
∑
g|f

|Cl
(2)
Rg
|(2− |X(O, Rg)|),∑

x∈Γ\L1(O)

µ(x) +
∑

x∈Γ\L3(O)

µ(x) =
∑
g|f

|Cl
(2)
Rg ,+
|(2− |X+(O, Rg)|),

(4.7)

otherwise

(4.8)
∑

x∈Γ\L2(O)

µ(x) =
∑
g|f

|Cl
(2)
Rg
|(2− |X(O, Rg)|).

So we finally complete the proof of Theorem 1 for a non-Galois cubic
field k by Proposition 2.5, (4.7) and (4.8).
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