A conjecture on the zeta functions of pairs of ternary quadratic forms

J. Nakagawa

Joetsu Univ. Edu.

June 2018

Pairs of ternary quadratic forms

V: the vector space of pairs of ternary quadratic forms $/\mathbb{C}$ in $v=(v_1,v_2,v_3)$.

$$x = (x_1, x_2) \in V, \quad x_k(v) = \sum_{1 \le i \le j \le 3} x_{k,ij} v_i v_j \qquad (k = 1, 2)$$

Identify x_k by symmetric matrix. Define a binary cubic form $F_x(u)$ in $u=(u_1,u_2)$ by

$$F_x(u) = 4\det(u_1x_1 - u_2x_2) = au_1^3 + bu_1^2u_2 + cu_1u_2^2 + du_2^3.$$

a,b,c,d are homogeneous polynomials of $x_{k,ij}$ of degree 3. Put

$$Disc(x) = Disc(F_x) = 18abcd + b^2c^2 - 4ac^3 - 4b^3d - 27a^2d^2.$$

 $\operatorname{Disc}(x)$ is a homogeneous polynomial of $x_{k,ij}$ of degree 12.

Group action

The group
$$G = \mathrm{SL}_3(\mathbb{C}) \times \mathrm{GL}_2(\mathbb{C})$$
 acts on V : $g = (g_1, g_2) \in G$, $x = (x_1, x_2) \in V$,

$$g \cdot x = (p(g_1x_1) + q(g_1x_2), r(g_1x_1) + s(g_1x_2)),$$

$$g_2 = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$$
, $(g_1 x_k)(v) = x_k(vg_1)$. Then we have

$$\operatorname{Disc}(g \cdot x) = (\det g_1)^8 (\det g_2)^6 \operatorname{Disc}(x).$$

 $S=\{x\in V: \operatorname{Disc}(x)=0\}$ is an irreducible hypersurface, $V\smallsetminus S$ is a single $G\text{-}\mathsf{orbit}.$

(G, V) is a prehomogeneous vector space, $\mathrm{Disc}(x)$ is its fundamental relative invariant.

Zero(x)

For any $x \in V \setminus S$, put

Zero(x) = {
$$v \in \mathbb{P}^2(\mathbb{C}) : x_1(v) = x_2(v) = 0$$
 }.

Then Zero(x) is a finite set consisting of four points.

The set $V_{\mathbb{R}} \setminus S_{\mathbb{R}}$ decomposes into three $G_{\mathbb{R}}$ -orbits V_1 , V_2 , V_3 . V_1 , V_2 and V_3 are the set of $x \in V_{\mathbb{R}} \setminus S_{\mathbb{R}}$ such that the cardinality of $\mathrm{Zero}(x) \cap \mathbb{P}^2(\mathbb{R})$ equals 4, 2, and 0, respectively.

Dual lattice

 $L \subset V_{\mathbb{R}}$: the lattice of pairs of integral ternary quadratic forms.

For
$$x = (x_1, x_2), y = (y_1, y_2) \in V$$
,

$$\langle x, y \rangle = \text{Tr}(x_1 y_2) + \text{Tr}(x_2 y_1)$$
 (Tr is the trace of matrices).

 \hat{L} : the dual lattice of L w.r.t. \langle , \rangle

is the set of pairs of integral symmetric matrices of degree 3.

 $\Gamma_1 = \mathrm{SL}_3(\mathbb{Z}), \ \Gamma_2 = \mathrm{GL}_2(\mathbb{Z}). \ \Gamma = \Gamma_1 \times \Gamma_2 \ \mathrm{acts} \ \mathrm{on} \ L \ \mathrm{and} \ \tilde{L}.$

For $y = (y_1, y_2) \in \hat{L}$, define an integral binary cubic form

$$\hat{F}_y(u) = \det(u_1 y_1 - u_2 y_2) = (1/4) F_y(u).$$

Put

$$\operatorname{Disc}^*(y) = \operatorname{Disc}(\hat{F}_y) = 2^{-8} \operatorname{Disc}(F_y).$$

Zeta functions

 Γ_x : the isotropy group of $x \in L \setminus S$ in Γ . $|\Gamma_x| \le 72$. Put $\mu(x) = 1/|\Gamma_x|$.

The zeta functions $\xi_i(L,s)$, $\xi_i(\hat{L},s)$ (i=1,2,3) are define by

$$\xi_i(L,s) = \sum_{x \in \Gamma \setminus L \cap V_i} \frac{\mu(x)}{|\operatorname{Disc}(x)|^s} = \sum_{n=1}^{\infty} \frac{a_i((-1)^{i-1}n)}{n^s},$$

$$\xi_i(\hat{L},s) = \sum_{x \in \Gamma \setminus L \cap V_i} \frac{\mu(y)}{n^s} = \sum_{n=1}^{\infty} \frac{\hat{a}_i((-1)^{i-1}n)}{n^s}$$

$$\xi_i(\hat{L}, s) = \sum_{y \in \Gamma \setminus \hat{L} \cap V_i} \frac{\mu(y)}{|\operatorname{Disc}^*(y)|^s} = \sum_{n=1}^{\infty} \frac{\hat{a}_i((-1)^{i-1}n)}{n^s},$$

where

$$a_i(n) = \sum_{\substack{x \in \Gamma \backslash (L \cap V_i) \\ \mathrm{Disc}(x) = n}} \mu(x), \qquad \hat{a}_i(n) = \sum_{\substack{y \in \Gamma \backslash (\hat{L} \cap V_i) \\ \mathrm{Disc}^*(y) = n}} \mu(y).$$

Functional equations

The zeta functions $\xi_i(L,s)$, $\xi_i(\hat{L},s)$ converge absolutely for $\Re(s)>1$. (Yukie, 'Shintani Zeta functions', Cambridge Univ. Press, 1993). The functional equations

$$(\xi_{i}(L, 1 - s))$$

$$= \Gamma(s)^{4} \Gamma\left(s - \frac{1}{6}\right)^{2} \Gamma\left(s + \frac{1}{6}\right)^{2} \Gamma\left(s - \frac{1}{4}\right)^{2} \Gamma\left(s + \frac{1}{4}\right)^{2}$$

$$\times 2^{8s} 3^{6s} \pi^{-12s}(u_{ji}^{*}(s))(\xi_{j}(\hat{L}, s)).$$

hold, where $u_{ji}^*(s)$ ' are polynomials of $q=\exp(\pi\sqrt{-1}s)$ and q^{-1} of degree at most 6. (Sato-Shintani, On zeta functions associated with prehomogeneous vector spaces, *Ann. of Math.* **100** (1974), 131–170).

Conjecture

We present the following conjecture which is a quartic analogue of Ohno conjecture (Y. Ohno, A conjecture on coincidence among the zeta functions associated with the space of binary cubic forms, *Amer. J. Math.* **119** (1997), 1083–1094.

J. Nakagawa, On the relations among the class numbers of binary cubic forms, Invent. math. 134, 101-138 (1998)).

Conjecture 1.1

$$\xi_1(\hat{L}, s) = \xi_1(L, s) + \xi_3(L, s),$$

$$\xi_2(\hat{L}, s) = 2\xi_2(L, s),$$

$$\xi_3(\hat{L}, s) = 3\xi_1(L, s) - \xi_3(L, s).$$

Results

a ring of rank n: a comm. ring with 1 that is a free \mathbb{Z} -module of rank n.

It is called *nondegenerate* if its discriminant is non-zero. For any $F(u) = au_1^3 + bu_1^2u_2 + cu_1u_2^2 + du_2^3 \in \mathbb{Z}[u_1, u_2]$,

R(F): the cubic ring associated with F(u) (Delone-Faddeev).

R(F) is a free \mathbb{Z} -module having \mathbb{Z} -basis $\{1, \omega, \theta\}$ and the multiplication table

(1.1)
$$\omega^{2} = -ac + b\omega - a\theta,$$
$$\theta^{2} = -bd + d\omega - c\theta,$$
$$\omega\theta = -ad.$$

 $F\mapsto R(F)$ gives a discriminant preserving bijection

 $\operatorname{GL}_2(\mathbb{Z})\backslash\{\text{integral binary cubic forms}\}\longleftrightarrow\{\text{cubic rings}\}/\cong.$

For any nondeg. cubic ring $\mathcal O$ and i=1,2,3, put

$$L(\mathcal{O}) = \{ x \in L : R(F_x) \cong \mathcal{O} \}, \quad L_i(\mathcal{O}) = L(\mathcal{O}) \cap V_i$$

$$\hat{L}(\mathcal{O}) = \{ y \in \hat{L} : R(\hat{F}_y) \cong \mathcal{O} \}, \quad \hat{L}_i(\mathcal{O}) = \hat{L}(\mathcal{O}) \cap V_i.$$

 \mathcal{O}_k : the maximal order of an étale algebra k over \mathbb{Q} .

Theorem 1

Let k be a cubic field and \mathcal{O} be an order of k such that the index $(\mathcal{O}_k : \mathcal{O})$ is square free. Then the following relations hold:

$$\sum_{y \in \Gamma \setminus \hat{L}_1(\mathcal{O})} \mu(y) = \sum_{x \in \Gamma \setminus L_1(\mathcal{O})} \mu(x) + \sum_{x \in \Gamma \setminus L_3(\mathcal{O})} \mu(x) \quad (\mathrm{Disc}(k) > 0),$$

$$\sum_{y \in \Gamma \setminus \hat{L}_2(\mathcal{O})} \mu(y) = 2 \sum_{x \in \Gamma \setminus L_2(\mathcal{O})} \mu(x) \quad (\mathrm{Disc}(k) < 0),$$

$$\sum_{y \in \Gamma \setminus \hat{L}_3(\mathcal{O})} \mu(y) = 3 \sum_{x \in \Gamma \setminus L_1(\mathcal{O})} \mu(x) - \sum_{x \in \Gamma \setminus L_3(\mathcal{O})} \mu(x) \quad (\mathrm{Disc}(k) > 0).$$

By Theorem 1 and applying Gauss's genus theory on the 2-rank of the ideal class groups of quadratic fields for the reducible algebras $k = \mathbb{Q} \oplus \mathbb{Q}(\sqrt{n})$, we obtain

Theorem 2

If n is a discriminant of a quadratic field, then the following relations hold:

$$\hat{a}_1(n) = a_1(n) + a_3(n) \quad (n > 0),$$

 $\hat{a}_2(n) = 2a_2(n) \quad (n < 0),$
 $\hat{a}_3(n) = 3a_1(n) - a_3(n) \quad (n > 0).$

HCL II

 $(\mathcal{O},\mathfrak{a},\delta)$: \mathcal{O} is a nondeg. cubic ring, \mathfrak{a} is a frac. ideal of \mathcal{O} , $\delta \in k^{\times}$, $k = \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}$, $\mathfrak{a}^2 \subset \delta \mathcal{O}$, $N_{k/\mathbb{Q}}(\delta) = N_{\mathcal{O}}(\mathfrak{a})^2$.

 $N_{\mathcal{O}}(\mathfrak{a})$: the norm of \mathfrak{a} as a frac. \mathcal{O} -ideal, $N_{\mathcal{O}}(\mathfrak{a}) = (\mathcal{O} : \mathfrak{a})$ for $\mathfrak{a} \subset \mathcal{O}$.

$$(\mathcal{O}, \mathfrak{a}, \delta) \sim (\mathcal{O}', \mathfrak{a}', \delta')$$

$$\iff \exists \phi : \mathcal{O} \cong \mathcal{O}', \ \exists \kappa \in \mathcal{O}' \otimes_{\mathbb{Z}} \mathbb{Q}, \ \mathfrak{a}' = \kappa \phi(\mathfrak{a}), \ \delta' = \kappa^2 \phi(\delta).$$

M. Bhargava proved the following theorem (Higher composition laws II, *Ann. of Math.* **159** (2004), 865–886).

Thorem 2.1 (Bhargava)

$$\Gamma \setminus \{ y \in \hat{L} : \mathrm{Disc}^*(y) \neq 0 \} \longleftrightarrow \{ (\mathcal{O}, \mathfrak{a}, \delta) \} / \sim,$$
$$\Gamma y \longmapsto [\mathcal{O}, \mathfrak{a}, \delta] \Longrightarrow \mathrm{Disc}(\mathcal{O}) = \mathrm{Disc}^*(y).$$

June 2018

Bijection of Theorem 2.1

 $\mathcal{O} \text{: a nondeg. cubic ring, with } \mathbb{Z}\text{-basis } \{1,\omega,\theta\} \\ \qquad \qquad \text{multiplication table (1.1), } a,b,c,d \in \mathbb{Z},\ k=\mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Q}, \\ \mathfrak{a} \text{: a frac. ideal of } \mathcal{O},\ \delta \in k^{\times},\ \mathfrak{a}^2 \subset \delta \mathcal{O},\ N_{k/\mathbb{Q}}(\delta) = N_{\mathcal{O}}(\mathfrak{a})^2, \\ \{\alpha_1,\alpha_2,\alpha_3\} \text{: a } \mathbb{Z}\text{-basis of } \mathfrak{a}, \\ \qquad \qquad \qquad (\alpha_1,\alpha_2,\alpha_3) = (1,\omega,\theta)\gamma_1\ (\exists \gamma_1 \in \mathrm{GL}_3(\mathbb{Q}),\ \det \gamma_1 > 0). \\ \mathfrak{a}^2 \subset \delta \mathcal{O} \Longrightarrow \exists a_{ii},b_{ii},c_{ii} \in \mathbb{Z} \text{ such that}$

(2.1)
$$\alpha_i \alpha_j = \delta(c_{ij} + b_{ij}\omega + a_{ij}\theta).$$

Put $A = (a_{ij})$, $B = (b_{ij})$. Then

$$\hat{F}_{(A,B)}(u) = au_1^3 + bu_1^2u_2 + cu_1u_2^2 + du_2^3.$$

 $(\mathcal{O}, \mathfrak{a}, \delta) \mapsto \Gamma \cdot (A, B)$ gives the bijection of Theorem 2.1.

Isotropy group $\Gamma_{(A,B)}$

 $\Gamma_{(A,B)}$: the isotropy group in Γ of a nondegen. pair $(A,B)\in \hat{L}$.

Corollary 2.2 (Bhargava)

For any nondeg. pair $(A, B) \in \hat{L}$,

$$\exists \Gamma_{(A,B)} \to \operatorname{Aut}(\mathcal{O}) \quad (\textit{group homo.})$$
 with kernel $\cong U_2^+(\mathcal{O}_0)$.

Here $(\mathcal{O},\mathfrak{a})$ is the pair corresponding to (A,B) as in Theorem 2.1, $\mathcal{O}_0 = \operatorname{End}_{\mathcal{O}}(\mathfrak{a})$, $U_2^+(\mathcal{O}_0) = \{ \varepsilon \in \mathcal{O}_0^\times : \varepsilon^2 = 1, \ N_{k/\mathbb{Q}}(\varepsilon) > 0 \}$.

$\hat{L}(\mathcal{O},\mathcal{O}_0)$

k: an étale cubic algebra over \mathbb{Q} ,

 \mathcal{O} : an order of k such that $f = (\mathcal{O}_k : \mathcal{O})$ is square free.

$$\hat{L}(\mathcal{O}) = \{(A, B) \in \hat{L} : R(\hat{F}_{(A,B)}) \cong \mathcal{O}\}.$$

Then

$$\hat{L}(\mathcal{O}) = \bigcup_{\mathcal{O} \subset \mathcal{O}_0 \subset \mathcal{O}_k} \hat{L}(\mathcal{O}, \mathcal{O}_0),
\hat{L}(\mathcal{O}, \mathcal{O}_0) = \{ (A, B) \in \hat{L}(\mathcal{O}) : \operatorname{End}_{\mathcal{O}}(\mathfrak{a}) = \mathcal{O}_0 \},
\Gamma \cdot (A, B) \longleftrightarrow [\mathcal{O}, \mathfrak{a}, \delta].$$

Γ_1 -orbits and Γ -orbits

Put

$$\hat{L}(F, \mathcal{O}_0) = \{ (A, B) \in \hat{L}(\mathcal{O}, \mathcal{O}_0) : \hat{F}_{(A,B)} = F \}.$$

Then $\Gamma_1 \cdot (A, B) \longmapsto \Gamma \cdot (A, B)$ defines a surjective mapping

$$\Gamma_1 \backslash \hat{L}(F, \mathcal{O}_0) \longrightarrow \Gamma \backslash \hat{L}(\mathcal{O}, \mathcal{O}_0).$$

By Corollary 2.2, the cardinality of the inverse image of $\Gamma \cdot (A,B)$ is $|\operatorname{Aut}(\mathcal{O})| \cdot |U_2^+(\mathcal{O}_0)|/|\Gamma_{(A,B)}|$. Hence

Lemma 2.3

$$|\Gamma_1 \backslash \hat{L}(F, \mathcal{O}_0)| = \sum_{(A,B) \in \Gamma \backslash \hat{L}(\mathcal{O}, \mathcal{O}_0)} \frac{|\operatorname{Aut}(\mathcal{O})| \cdot |U_2^+(\mathcal{O}_0)|}{|\Gamma_{(A,B)}|}$$

Ideal $\mathfrak{j}(\mathcal{O},\mathcal{O}_0)$

```
\exists \{1, \omega, \theta\}: a basis of \mathcal{O}_k, \omega, \theta \in k^{\times}, \mathcal{O} = [1, f\omega, \theta],
                         multiplication table (1.1), a, b, c, d \in \mathbb{Z} \quad (\Rightarrow f|d).
(\mathcal{O}, \mathfrak{a}, \delta): a triplet, \mathcal{O}_0 = \operatorname{End}_{\mathcal{O}}(\mathfrak{a}).
                     \Longrightarrow \mathcal{O}_0 = [1, q\omega, \theta] \ (\exists q | f). Write f = qh.
f = [f, f\omega, \theta]: the conductor of \mathcal{O} (the maximal \mathcal{O}_k-ideal in \mathcal{O})
\mathfrak{g} = [q, q\omega, \theta]: the conductor of \mathcal{O}_0.
                     \Longrightarrow \mathcal{O} = \mathbb{Z} + \mathfrak{f}. \mathcal{O}_0 = \mathbb{Z} + \mathfrak{a}.
Put j = [h, f\omega, \theta] \subset \mathcal{O}. Then j is an \mathcal{O}_0-ideal.
f = qh is square free \Longrightarrow \gcd(q,h) = 1, \mathfrak{j} + \mathfrak{g} = \mathcal{O}_0.
\mathfrak{h} = [h, h\omega, \theta] and \mathfrak{h}' = [h, \omega, \theta + c] are \mathcal{O}_k-ideals, \mathfrak{h}\mathfrak{h}' = h\mathcal{O}_k.
\mathfrak{j}\mathcal{O}_k=\mathfrak{h} \Longrightarrow \mathfrak{j} is an invertible \mathcal{O}_0-ideal.
j is the largest \mathcal{O}_0-ideal in \mathcal{O}. Write \mathfrak{j}=\mathfrak{j}(\mathcal{O},\mathcal{O}_0).
```

Fröhlich's result

R: a nondeg. ring of rank n. \mathfrak{c} : a frac. ideal of R. \mathfrak{c} is proper $\iff \operatorname{End}_R(\mathfrak{c}) = R$.

R is weakly self dual \iff every proper R-ideal is invertible.

 $g = (\mathcal{O}_k : \mathcal{O}_0)$ is square free $\Longrightarrow \mathcal{O}_0$ is weakly self dual.

(Fröhlich, Invariants for modules over commutative separable orders,

Quart. J. Math. Oxford (2) 16 (1965), 193-232.).

Hence \mathfrak{a} is an invertible \mathcal{O}_0 -ideal.

By a result of Fröhlich, for any proper \mathcal{O}_0 -ideal \mathfrak{b}

$$\mathfrak{b}$$
 is invertible $\iff (\mathcal{O}_k \mathfrak{b} : \mathfrak{b}) = (\mathcal{O}_k : \mathcal{O}_0).$

Hence for any proper integral \mathcal{O}_0 -ideal \mathfrak{b} , we have

$$N_{\mathcal{O}_0}(\mathfrak{b}) = (\mathcal{O}_0 : \mathfrak{b}) = \frac{(\mathcal{O}_k : \mathcal{O}_k \mathfrak{b})(\mathcal{O}_k \mathfrak{b} : \mathfrak{b})}{(\mathcal{O}_k : \mathcal{O}_0)} = (\mathcal{O}_k : \mathcal{O}_k \mathfrak{b}) = N(\mathcal{O}_k \mathfrak{b}).$$

$\delta^{-1}\mathfrak{a}^2 = \mathfrak{j}(\mathcal{O}, \mathcal{O}_0)$

This implies that the norm $N_{\mathcal{O}_0}$ is multiplicative for proper \mathcal{O}_0 -ideals. Hence

$$N_{\mathcal{O}_0}(\mathfrak{a}) = (\mathcal{O}_0 : \mathcal{O}) N_{\mathcal{O}}(\mathfrak{a}) = h N_{\mathcal{O}}(\mathfrak{a}),$$

$$N_{\mathcal{O}_0}(\delta^{-1}\mathfrak{a}^2) = N_{k/\mathbb{Q}}(\delta)^{-1} N_{\mathcal{O}_0}(\mathfrak{a})^2 = N_{k/\mathbb{Q}}(\delta)^{-1} h^2 N_{\mathcal{O}}(\mathfrak{a})^2 = h^2.$$

$$\mathfrak{j} = [h, gh\omega, \theta], \, \mathcal{O}_0 = [1, g\omega, \theta] \Longrightarrow N_{\mathcal{O}_0}(\mathfrak{j}) = h^2 = N_{\mathcal{O}_0}(\delta^{-1}\mathfrak{a}^2).$$

$$\delta^{-1}\mathfrak{a}^2 \subset \mathfrak{j} \Longrightarrow \delta^{-1}\mathfrak{a}^2 = \mathfrak{j}.$$

 $I_{\mathcal{O}_0}$: the group of invertible frac. \mathcal{O}_0 -ideals.

Put

$$\mathscr{I}(\mathcal{O},\mathcal{O}_0) = \{(\mathfrak{a},\delta) \in I_{\mathcal{O}_0} \times k^{\times} : \delta^{-1}\mathfrak{a}^2 = \mathfrak{j}(\mathcal{O},\mathcal{O}_0), N_{k/\mathbb{Q}}(\delta) > 0\}.$$

For any (\mathfrak{a}, δ) , $(\mathfrak{a}', \delta') \in \mathscr{I}(\mathcal{O}, \mathcal{O}_0)$,

$$(\mathfrak{a}, \delta) \sim (\mathfrak{a}', \delta') \iff \exists \kappa \in k^{\times}, \mathfrak{a}' = \kappa \mathfrak{a}, \delta' = \kappa^2 \delta.$$

Then $(\mathfrak{a}, \delta) \longmapsto \Gamma_1 \cdot (A, B)$ induces a bijection

$$\mathscr{I}(\mathcal{O}, \mathcal{O}_0)/\sim \longleftrightarrow \Gamma_1 \backslash \hat{L}(F, \mathcal{O}_0),$$

 $([\mathcal{O}, \mathfrak{a}, \delta] \longleftrightarrow \Gamma \cdot (A, B) \text{ in Theorem 2.1}).$

 $X(\mathcal{O},\mathcal{O}_0)\subset\operatorname{Cl}_{\mathcal{O}_0}/\operatorname{Cl}_{\mathcal{O}_0}^2$: the subgr. gen. by $\mathfrak{j}(\mathcal{O},\mathcal{O}_0)$.

$$\mathscr{I}(\mathcal{O}, \mathcal{O}_0) \neq \emptyset \iff |X(\mathcal{O}, \mathcal{O}_0)| = 1.$$

$$Cl_{\mathcal{O}_0}^{(2)} = \{c \in Cl_{\mathcal{O}_0} : c^2 = 1\}.$$
 Then

$$|\mathscr{I}(\mathcal{O}, \mathcal{O}_0)/\sim| = |\operatorname{Cl}_{\mathcal{O}_0}^{(2)}|(U^+(\mathcal{O}_0): U^+(\mathcal{O}_0)^2)(2 - |X(\mathcal{O}, \mathcal{O}_0)|).$$

By Lemma 2.3,

$$\sum_{(A,B)\in\Gamma\setminus\hat{L}(\mathcal{O},\mathcal{O}_0)} \frac{1}{|\Gamma_{(A,B)}|} = \frac{(U^+(\mathcal{O}_0):U^+(\mathcal{O}_0)^2)}{|\operatorname{Aut}(\mathcal{O})|\,|U_2^+(\mathcal{O}_0)|}\,|\operatorname{Cl}_{\mathcal{O}_0}^{(2)}| \times (2-|X(\mathcal{O},\mathcal{O}_0)|).$$

Assume Disc(k) > 0.

$$\hat{L}(\mathcal{O}, \mathcal{O}_0) = \hat{L}_1(\mathcal{O}, \mathcal{O}_0) \cup \hat{L}_3(\mathcal{O}, \mathcal{O}_0).$$

 $Cl_{\mathcal{O}_0,+}$: the narrow ideal class group.

 $U_+(\mathcal{O}_0)$: the group of totally positive units in \mathcal{O}_0 ,

 $U_2(\mathcal{O}_0) = \{ \varepsilon \in \mathcal{O}_0^{\times} : \varepsilon^2 = 1 \},$

 $X_+(\mathcal{O},\mathcal{O}_0) \subset \operatorname{Cl}_{\mathcal{O}_0,+}/\operatorname{Cl}^2_{\mathcal{O}_0,+}$: the subgr. gen. by $\mathfrak{j}(\mathcal{O},\mathcal{O}_0)$.

$$\sum_{(A,B)\in\Gamma\backslash\hat{L}_{1}(\mathcal{O},\mathcal{O}_{0})}\frac{1}{|\Gamma_{(A,B)}|} = \frac{(U_{+}(\mathcal{O}_{0}):U_{+}(\mathcal{O}_{0})^{2})}{2^{3}|\operatorname{Aut}(\mathcal{O})||U_{2}(\mathcal{O}_{0})|} |\operatorname{Cl}_{\mathcal{O}_{0},+}^{(2)}| \times (2 - |X_{+}(\mathcal{O},\mathcal{O}_{0})|).$$

Proposition 2.4

Let k be a cubic field and $\mathcal{O} \subset \mathcal{O}_0$ be orders of k such $(\mathcal{O}_k : \mathcal{O})$ is square free. If $\mathrm{Disc}(k) > 0$, then

$$\begin{split} & \sum_{y \in \Gamma \setminus \hat{L}_{1}(\mathcal{O}, \mathcal{O}_{0})} \mu(y) \\ & = \frac{|\operatorname{Cl}_{\mathcal{O}_{0}, +}^{(2)}|}{|\operatorname{Aut}(\mathcal{O})|} (2 - |X_{+}(\mathcal{O}, \mathcal{O}_{0})|), \\ & \sum_{y \in \Gamma \setminus \hat{L}_{1}(\mathcal{O}, \mathcal{O}_{0})} \mu(y) + \sum_{y \in \Gamma \setminus \hat{L}_{3}(\mathcal{O}, \mathcal{O}_{0})} \mu(y) \\ & = \frac{4|\operatorname{Cl}_{\mathcal{O}_{0}}^{(2)}|}{|\operatorname{Aut}(\mathcal{O})|} (2 - |X(\mathcal{O}, \mathcal{O}_{0})|), \end{split}$$

otherwise

$$\sum_{y \in \Gamma \setminus \hat{L}_2(\mathcal{O}, \mathcal{O}_0)} \mu(y) = 2|\operatorname{Cl}_{\mathcal{O}_0}^{(2)}| (2 - |X(\mathcal{O}, \mathcal{O}_0)|).$$

SL_2 -invariants of pairs of ternary quadratic forms

Write $(A, B) \in L$ as

$$A(v) = \sum\nolimits_{1 \leq i \leq j \leq 3} a_{ij} v_i v_j, \quad B(v) = \sum\nolimits_{1 \leq i \leq j \leq 3} b_{ij} v_i v_j.$$

Put $a_{ji}=a_{ij}$, $b_{ji}=b_{ij}$ and define $\lambda^{ij}_{k\ell}=\lambda^{ij}_{k\ell}(A,B)$ by

(3.1)
$$\lambda_{k\ell}^{ij}(A,B) = \begin{vmatrix} a_{ij} & b_{ij} \\ a_{k\ell} & b_{k\ell} \end{vmatrix}.$$

For any permutation (i, j, k) of (1, 2, 3), we put

$$c_{ii}^{i} = \pm \lambda_{ij}^{ik} + C_{i},$$
 $c_{ij}^{j} = \pm \lambda_{ii}^{ii},$ $c_{ij}^{i} = \pm (1/2)\lambda_{jj}^{ik} + (1/2)C_{j},$ $c_{ij}^{k} = \pm \lambda_{ii}^{jj},$

 $C_1=\lambda_{11}^{23},~C_2=-\lambda_{22}^{13},~C_3=\lambda_{33}^{12},~\pm$ denotes the signature of the permutation (i,j,k). Then $c_{ij}^k\in\mathbb{Z}$ for k>0. Put

(3.2)
$$c_{ij}^0 = \sum_{r=1}^3 (c_{jk}^r c_{ri}^k - c_{ij}^r c_{rk}^k).$$

Quartic rings and pairs of ternary quadratic forms

Q(A,B): the quartic ring associated with (A,B). (Bhargava) Q(A,B) is a free \mathbb{Z} -module with basis $\{\alpha_0=1,\alpha_1,\alpha_2,\alpha_3\}$, and the multiplication of Q(A,B) is given by

(3.3)
$$\alpha_i \alpha_j = \sum_{k=0}^3 c_{ij}^k \alpha_k \quad (i, j \in \{1, 2, 3\}).$$

The discriminant of Q(A,B) is equal to $\mathrm{Disc}(A,B)=\mathrm{Disc}(F_{(A,B)})$, $F_{(A,B)}(u)=4\det(u_1A-u_2B)$. The cubic ring $R(A,B)=R(F_{(A,B)})$ has the same discriminant $\mathrm{Disc}(A,B)$.

For any quartic ring Q and for an element $x \in Q$, denote by x,x',x'',x''' the 'conjugates' of x. Put $\phi(x)=xx'+x''x'''$. Then all $\phi(x)$ are contained in some cubic ring $R^{\mathrm{inv}}(Q)$. A cubic resolvent ring of Q is a cubic ring R such that $\mathrm{Disc}(R)=\mathrm{Disc}(Q)$ and $R\supset R^{\mathrm{inv}}(Q)$.

HCL III

Bhargava proved the following theorem (Higher composition laws III, *Ann. of Math.* **159** (2004), 1329–1360.).

Thorem 3.1 (Bhargava)

$$(A,B)\mapsto (Q(A,B),R(A,B))$$
 induces a bijection
$$\Gamma\backslash\{(A,B)\in L: \mathrm{Disc}(A,B)\neq 0\}\longleftrightarrow \{(Q,R)\}/\cong,$$

Q is a nondeg. quartic ring, R is a cubic resolvent ring of Q.

Corollary 3.2 (Bhargava)

Every quartic ring has a cubic resolvent ring. A primitive quartic ring has a unique cubic resolvent ring up to isomorphism. In particular, every maximal quartic ring has a unique cubic resolvent ring.

$\overline{\Gamma_{(A,B)}}$ and $\overline{\mathrm{Aut}}(Q(A,B))$

We call (A, B) primitive if $gcd(\lambda_{k\ell}^{ij}(A, B)) = 1$.

Proposition 3.3

For any nondeg. pair $(A, B) \in L$,

$$\exists \Gamma_{(A,B)} \longrightarrow \operatorname{Aut}(Q(A,B))$$
 (inj. group homo.).

If (A, B) is primitive, then the homo. is an isom.

Hence if (A, B) is primitive,

$$\mu(A, B) = \frac{1}{|\Gamma_{(A,B)}|} = \frac{1}{|\operatorname{Aut}(Q(A,B))|}.$$

Relative discriminant $\mathrm{Disc}(k_6/k)$

```
k: a non-Galois cubic field.
\mathcal{O}: an order of k, f = (\mathcal{O}_k : \mathcal{O}) is square free,
K: an S_A-quartic field,
      K contains an order Q that has a cubic resolvent ring \cong \mathcal{O},
K: the Galois closure of K.
k_6: the non-Galois sextic field, k \subset k_6 \subset K.
k_6 = k(\sqrt{\alpha}), \ \alpha \in k^{\times}, \ N_{k/\mathbb{O}}(\alpha) = a^2, \ a \in \mathbb{O}^{\times}.
\implies N(\operatorname{Disc}(k_6/k)) = g^2 \ (\exists g \in \mathbb{N}), \ \operatorname{Disc}(K) = g^2 \operatorname{Disc}(k),
        f = qh, h = (\mathcal{O}_K : Q).
\mathfrak{f}: the conductor of \mathcal{O}. N(\mathfrak{f}) = f^2,
\mathfrak{f}_p: the p-part of \mathfrak{f} for p|f.
Put \mathfrak{g} = \prod_{p|a} \mathfrak{f}_p, \mathfrak{h} = \prod_{p|h} \mathfrak{f}_p.
\Longrightarrow \mathfrak{q} = \operatorname{Disc}(k_6/k)
           = the cond. of the unique cubic resolvent ring of \mathcal{O}_K.
```

Quartic rings Q having cubic resolvent ring $\mathcal O$

 $a_K(\mathfrak{h})=\#\{Q\subset\mathcal{O}_K:Q \text{ has cubic resolvent ring }\cong\mathcal{O}\},$ $I_k(\mathfrak{g}):$ the group of frac. ideals of k, relatively prime to \mathfrak{g} , $H\subset I_k(\mathfrak{g}):$ the subgr. $\longleftrightarrow k_6/k$ by class field theory, $\chi:$ the character of $I_k(\mathfrak{g})$, $\ker\chi=H.$ Then we have

(4.1)
$$a_K(\mathfrak{h}) = \prod_{p|h} (1 + \chi(\mathfrak{f}_p)).$$

If $\mathrm{Disc}(k) < 0$, then the number of quartic rings Q with fixed cubic resolvent ring $\mathcal O$ is given by the sum

(4.2)
$$\sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{g})} a_K(\mathfrak{h}) = \sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{g})} \prod_{p|h} (1 + \chi_K(\mathfrak{f}_p)).$$

 $\mathcal{K}_k(\mathfrak{g})$ is the set of isomorphism classes of quartic fields K satisfying the following conditions:

- (a) The normal closure \tilde{K} of K over \mathbb{Q} has Galois group S_4 and contains k.
- (b) The unique cubic resolvent ring of the maximal order \mathcal{O}_K is isomorphic to $\mathcal{O}_0 = \mathbb{Z} + \mathfrak{g}$.
- (c) K is totally real if Disc(k) > 0.

If $\mathrm{Disc}(k)>0$, then the sum (4.2) gives the number of such quartic rings contained in some totally real S_4 -quartic fields.

If $\operatorname{Disc}(k)>0$, denote by $\mathcal{K}_k(\mathfrak{gf}_\infty)$ the set of isomorphism classes of quartic fields K satisfying the conditions (a) and (b) above (including totally imaginary fields). If $\operatorname{Disc}(k)>0$, then the number of quartic rings contained in some quartic fields with fixed cubic resolvent ring $\mathcal O$ is given by

(4.3)
$$\sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{gf}_{\infty})} a_K(\mathfrak{h}) = \sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{gf}_{\infty})} \prod_{p|h} (1 + \chi_K(\mathfrak{f}_p)).$$

By class field theory and quadratic reciprocity laws over the cubic field k, we obtain the following formulae.

(4.4)
$$\sum_{\mathfrak{g}|\mathfrak{f}} |\mathcal{K}_k(\mathfrak{g})| = |\operatorname{Cl}_{\mathcal{O}}^{(2)}| - 1,$$

$$\sum_{\mathfrak{g}|\mathfrak{f}} |\mathcal{K}_k(\mathfrak{g}\mathfrak{f}_{\infty})| = |\operatorname{Cl}_{\mathcal{O},+}^{(2)}| - 1.$$

We can rewrite the right hand sides of (4.2) and (4.3) so that we finally obtain the following formulae:

(4.5)
$$\sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{g})} a_K(\mathfrak{h}) = \sum_{g|f} |\operatorname{Cl}_{R_g}^{(2)}| (2 - |X(\mathcal{O}, R_g)|) - 2^{\omega(f)},$$

(4.6)
$$\sum_{g|f} \sum_{K \in \mathcal{K}_k(\mathfrak{gf}_{\infty})} a_K(\mathfrak{h}) = \sum_{g|f} |\operatorname{Cl}_{R_g,+}^{(2)}| (2 - |X_+(\mathcal{O}, R_g)|) - 2^{\omega(f)}$$

$$(\operatorname{Disc}(k) > 0).$$

Here $\omega(f) = \#\{p : p|f\}$, $R_g = \mathbb{Z} + \mathfrak{g}$. We see

$$2^{\omega(f)} = \#\{Q \subset \mathbb{Q} \oplus k : Q \text{ has cubic resolvent ring } \cong \mathcal{O}\}.$$

We write $x=(A,B)\in L(\mathcal{O})$, $\mu(x)=1/|\Gamma_x|$. By Proposition 3.3, $\mu(x)=1/|\operatorname{Aut}(Q(A,B))|=1$. It follows from Theorem 3.1, Corollary 3.2, (4.5) and (4.6) that if $\operatorname{Disc}(k)>0$, then

$$\sum_{x \in \Gamma \setminus L_1(\mathcal{O})} \mu(x) = \sum_{g|f} |\operatorname{Cl}_{R_g}^{(2)}| (2 - |X(\mathcal{O}, R_g)|),$$

$$\sum_{x \in \Gamma \setminus L_1(\mathcal{O})} \mu(x) + \sum_{x \in \Gamma \setminus L_3(\mathcal{O})} \mu(x) = \sum_{g|f} |\operatorname{Cl}_{R_g,+}^{(2)}| (2 - |X_+(\mathcal{O}, R_g)|),$$

otherwise

(4.8)
$$\sum_{x \in \Gamma \setminus L_2(\mathcal{O})} \mu(x) = \sum_{g|f} |\operatorname{Cl}_{R_g}^{(2)}| (2 - |X(\mathcal{O}, R_g)|).$$

So we finally complete the proof of Theorem 1 for a non-Galois cubic field k by Proposition 2.4, (4.7) and (4.8).