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Pairs of ternary quadratic forms

V. the vector space of pairs of ternary quadratic forms /C
in v = (vy, Vg, v3).

v =(r1,22) €V, m(v) = Zl<i<j<3 zegviv;  (k=1,2)

Identify x; by symmetric matrix. Define a binary cubic form Fj(u) in
u = (uy,us) by

Fo(u) = 4det(uiz; — uoxs) = au’ + buluy + cuyus + dul.
a, b, c,d are homogeneous polynomials of xy,;; of degree 3. Put
Disc(z) = Disc(F,) = 18abed + b*c* — 4ac® — 4b*d — 27a*d>.

Disc(x) is a homogeneous polynomial of zy;; of degree 12.
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The group G = SL3(C) x GLy(C) acts on V:

9-x = (p(g171) + q(g172), 7(g171) + s(g172)),

go = ( ?; g ) (g12%)(v) = x(vgy). Then we have

Disc(g - ) = (det g1)®(det g2)® Disc(z).

S ={x €V : Disc(z) = 0} is an irreducible hypersurface,
V'~ S is a single G-orbit.

(G, V) is a prehomogeneous vector space,

Disc(z) is its fundamental relative invariant.
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Zero(x)

Forany x € V . .9, put
Zero(z) = {v € P*(C) : z1(v) = x5(v) = 0}.

Then Zero(z) is a finite set consisting of four points.

v

The set Vi ~ Sk decomposes into three Gr-orbits Vi, V5, V3. Vi, Vs
and V3 are the set of x € Vi . Sk such that the cardinality of
Zero(z) NP%(R) equals 4, 2, and 0, respectively.
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Dual lattice

L C Vg: the lattice of pairs of integral ternary quadratic forms.
For z = (z1,22),y = (y1,42) €V,

(x,y) = Tr(z1y2) + Tr(xoy1) (Tr is the trace of matrices).

L: the dual lattice of L w.r.t. (,)

is the set of pairs of integral symmetric matrices of degree 3.
', = SLy(Z), Ty = GLy(Z). T =T, x I’y acts on L and L.
For y = (y1,42) € L, define an integral binary cubic form

~

Fy(u) = det(uiyr — ugya) = (1/4)F,(u).

Put
Disc*(y) = Disc(F,) = 27° Disc(F,).
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Zeta functions

[',: the isotropy group of z € L . .S in T. T, < 72.
Put () = 1/|I%] A
The zeta functions &;(L, s), &(L, s) (i = 1,2, 3) are define by

zel\LNV; ‘ DiSC(Qf)’S n=1 ne
- 1(y) — ai((=1)""'n)
i(L,s) = IO —
§Lo= D THegr X
ye\LNV; n=1

where

ain)= Y px), am)= Y ).

z€l\(LNV; LNV,
Dist\:((x):n) 2,1’36150\*(([;/?:11)
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Functional equations

The zeta functions & (L, s), & (L, s) converge absolutely for
R(s) > 1. (Yukie, ‘Shintani Zeta functions', Cambridge Univ. Press,
1993). The functional equations

(&(La 1- 3))

::F@yp(s_é)2r<s+é)2r(s—i)2r(s+i)z
P (5)) 6 (L))

hold, where u,;(s)" are polynomials of ¢ = exp(my/—1s) and ¢! of
degree at most 6. (Sato-Shintani, On zeta functions associated with
prehomogeneous vector spaces, Ann. of Math. 100 (1974),
131-170).
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We present the following conjecture which is a quartic analogue of
Ohno conjecture (Y. Ohno, A conjecture on coincidence among the
zeta functions associated with the space of binary cubic forms, Amer.
J. Math. 119 (1997), 1083-1094.

J. Nakagawa, On the relations among the class numbers of binary
cubic forms, Invent. math. 134, 101-138 (1998)).

Conjecture 1.1

(L, s) = &u(L, 8) +&(L, 5),
fg(f/, S) = 252([/, S),
§3<f/7 S) = 3§1<L7 S) - 53(L7 S)‘
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a ring of rank n: a comm. ring with 1 that is a free
Z-module of rank n.

It is called nondegenerate if its discriminant is non-zero.

For any F'(u) = au? + buuy + cuyu3 + dui € Zuy, uy),

R(F): the cubic ring associated with F'(u) (Delone-Faddeev).

R(F) is a free Z-module having Z-basis {1,w, 6} and the

multiplication table

2

w” = —ac+ bw — ab,
(1.1) 0% = —bd + dw — 0,
wl = —ad.

F +— R(F) gives a discriminant preserving bijection

GL3(Z)\{integral binary cubic forms} «— {cubic rings}/ = .
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For any nondeg. cubic ring O and i = 1,2, 3, put
L(O) ={z e L: R(F;) = O}, L;j(O0)=LO)NYV;
LO)={yeL:R(F)=0}, L(0)=LO)NV.
Oy: the maximal order of an étale algebra k over QQ.

Theorem 1

Let k be a cubic field and O be an order of k such that the index
(O : O) is square free. Then the following relations hold:

douy= D wa)+ > ) (Disc(k)>0),

yel\ L1 (0) x€l\L1(0) z€l\L3(0)
> uw)=2 > plw) (Disc(k)<0),
yel\ Lo (0) €T\ L2(0)

S oa=3 Y wle)— Y ple) (Dise(k)>0).

ye\L3(0) z€l\L1(0) z€l\L3(0)

™ (il = =
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By Theorem 1 and applying Gauss's genus theory on the 2-rank of
the ideal class groups of quadratic fields for the reducible algebras

k=Q® Q(y/n), we obtain

Theorem 2

If n is a discriminant of a quadratic field, then the following relations

hold:

az(n) (n <0),
ai(n) — az(n)

OO[\DQ

1(n) +as(n) (n>0),
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HCL Il

(O,a,d): O is a nondeg. cubic ring, a is a frac. ideal of O,
dek’, k=0®zQ, a*> C 60, Nig(d) = No(a)?.
No(a): the norm of a as a frac. O-ideal,
No(a) = (O :a) foracC O.

(0,a,0) ~ (O, d,d)
= Jp: 020, Ik O ®,Q, d =kp(a), & = K*¢(9).

M. Bhargava proved the following theorem (Higher composition laws
II, Ann. of Math. 159 (2004), 865-886).

Thorem 2.1 (Bhargava)

I\{y € L : Disc*(y) # 0} +— {(0,a,8)}/ ~,
'y — [0, a,0] = Disc(O) = Disc*(y).
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Bijection of Theorem 2.1

O: a nondeg. cubic ring, with Z-basis {1,w, 0}
multiplication table (1.1), a,b,c,d € Z, k = O ®7 Q,
a: a frac. ideal of O, § € k%, a*> C 00, Ny g(0) = No(a)?,
{a1, a9, a3}: a Z-basis of a,
(a1, a9, a3) = (L,w,0)y1 (371 € GL3(Q), dety; > 0).
a’ C 00 = Elaij, bij7cij € Z such that

(21) ;0 = (S(Cij -+ bijw -+ Clije).
Put A = (aij), B= (b”) Then

Fap)(u) = GU? + bu%uZ + culug + dug.

(O,a,0) — T'- (A, B) gives the bijection of Theorem 2.1.
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Isotropy group (4 p

A

I'(a,p): the isotropy group in I' of a nondegen. pair (A, B) € L.
Corollary 2.2 (Bhargava)
For any nondeg. pair (A, B) € L,

Il 4, — Aut(O) (group homo.)
with kernel = U, (Oy).

Here (O, a) is the pair corresponding to (A, B) as in Theorem 2.1,
Oy = Endo(a), U5 (Op) = {e € Of : e =1, Nyq(e) > 0}.
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L(O,Oy)

k: an étale cubic algebra over Q,
O: an order of k such that f = (O : O) is square free.
Then

Loy= J Lo,0)

L(O,0y) = {(A, B) € L(O) : Endo(a) = Oy},
I'-(A,B) +— [0,a,0].
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['1-orbits and ['-orbits

Put

A

L(F,00) = {(A,B) € L(0,0y) : Fap = F}.
Then I'y - (A, B) — I' - (A, B) defines a surjective mapping
PAL(F, 0p) — T\L(O, Oy).

By Corollary 2.2, the cardinality of the inverse image of ' - (A, B) is
| Aut(O)| - [U5"(Oo)|/IT'(a,p)|- Hence

Lemma 2.3

o u . + o
TALFO) = 3 | Aut(O)] - [Uy"(Oo)|

r
(A,B)el\L(0,00) | (A,B) |
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Ideal (O, Oy)

I{1,w,0}: a basis of O, w,0 € k*, O =1, fw,b)],
multiplication table (1.1), a,b,c,d € Z (= f|d).

(O, a,0): a triplet, Oy = Endp(a).

= Oy = [1, 9w, 0] (Fg|f). Write f = gh.
f =[f, fw,0]: the conductor of O (the maximal Ok-ideal in O)
g = [g, gw, 0]: the conductor of Oy.
Putj = [h, fw,0] C O. Then j is an Oy-ideal.
f = gh is square free = gcd(g,h) =1, )+ g = Oo.
h = [h, hw, 0] and B’ = [h,w, 0 + ] are Ok-ideals, hy’ = hOy.
jOr = b = j is an invertible Oy-ideal.
j is the largest Ogp-ideal in O. Write j = j(O, Oy).
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Frohlich's result

R: a nondeg. ring of rank n. ¢: a frac. ideal of R.

¢ is proper <= Endg(c) = R.

R is weakly self dual <= every proper R-ideal is invertible.

g = (O : Op) is square free => Oy is weakly self dual.

(Frohlich, Invariants for modules over commutative separable orders,
Quart. J. Math. Oxford (2) 16 (1965), 193-232.).

Hence a is an invertible Oy-ideal.

By a result of Frohlich, for any proper Oq-ideal b

b is invertible <= (Oyb: b) = (O : Op).
Hence for any proper integral Ogy-ideal b, we have

N()O(b) = (O() . b) = (Ok : (’)0)

= (O : Opb) = N(Oyb).
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5_1a2 — J(Oa OO)

This implies that the norm Ny, is multiplicative for proper Og-ideals.
Hence

NOO(CL) = (OO : (’))N@(a) = hN@(a),
N@O<(5_1Cl2) = Nk/Q(5>_1N@0(a>2 = Nk/@(é)_1h2]\7@(a)2 = h2.
i =[h, ghw, 0], Oy = [1, gw, 0] = Np, (i) = h? = No, (6 'a?).
bt Cj = dta=)j.

Io,: the group of invertible frac. Og-ideals.
Put

j(0,0o) = {(Cl, 6) S [(90 x k- 571Cl2 = ](O, Oo),Nk/Q((S) > 0}
For any (a,9), (d/,¢") € (0, O0y),

(a,6) ~ (a,0) <= Ix € k™, d = ka,§ = k0.
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Then (a,d) — I'y - (A, B) induces a bijection

j(@, Oo)/ ~ Fl\f/(F, O()),
([0,a,0] +— T - (A, B) in Theorem 2.1).

X(0,0) C Clo, / Clg,: the subgr. gen. by j(O, Oy).
F(0,00) £ 0 <= |X(0,0)| = 1.
Clgg ={c € Clp, : > =1}. Then
7(0,00)/ ~ | = |CI) [(UF(O0) : UH(0p)?) (2 = |X (0, 0))]).
By Lemma 2.3,

> 1 (U*(Og) : UT(0)?) @)

Tupl  [Awt(O0)] U3 (O)

(A,B)el'\L(0,00)
x (2 = [X(O,00)|).
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Assume Disc(k) > 0.
L(O,04) = L1(0,0y) U L3(O, Oy).

Clp,,+: the narrow ideal class group.

U, (Oy): the group of totally positive units in Oy,

UQ(OQ) = {5 S Og . 82 = 1},

X4(0,00) C Clo,+ / Clg, .= the subgr. gen. by j(O, Oy).
Z 1 (U+(O) : U (00)?)

~ 53 | Clgg + |
Tl 23 Aut(O)]|U2(O0)| ’

(A,B)el’\ L1 (0,00)
x (2 = X4(0,00)]).

J. Nakagawa (Joetsu Univ. Edu.) Pairs of ternary quadratic forms June 2018 21/32



Proposition 2.4

Let k be a cubic field and O C Oy be orders of k such (O, : O) is
square free. If Disc(k) > 0, then

ZZJGF\L(O,OO) M(y)
fer5i
= D5 oY (RN
|Allt(0)| ( | +(0700)|)7
Zyer\il(o,oo) my) + ZyeF\ﬁa(O,Oo) Hy)
4|1 |
= "% _(9_|x

otherwise

> uly) =21CIS | (2 - X (0,00)).
yel\L2(0,00)
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SLo-invariants of pairs of ternary quadratic forms

Write (A, B) € L as

A(U) = 2195353 a;;V;Vy, B(U) = ZlgiSjSS bij’Uin.
Put aj; = agj, bj; = by and define A, = \,(A, B) by

(3.1) NUAB) = | 0 g;i
For any permutation (i,7,k) of (1,2,3), we put
XY+ G, c7 A,
= jE(1/2)>\}'§ (1/2)C;, ey = £,

Cy = \33, Cg — A3 C3 = M2, & denotes the signature of the
permutation (4, j, k). Then cfj € Z for k > 0. Put

3
(32) C?j = Zrzl(cgkcﬁz C:]cffk)
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Quartic rings and pairs of ternary quadratic forms

Q(A, B): the quartic ring associated with (A, B). (Bhargava)
Q(A, B) is a free Z-module with basis {ag = 1, a1, as, a3}, and the
multiplication of Q(A, B) is given by

3 . .
(3.3) o = Zk:o ar (1,5 €{1,2,3}).

The discriminant of Q(A, B) is equal to Disc(A, B) = Disc(F{4,5)),
Fiap)(u) = 4det(u1 A — uyB). The cubic ring R(A, B) = R(F(a,p))
has the same discriminant Disc(A4, B).

For any quartic ring @) and for an element = € (), denote by

x, 2,2 2" the ‘conjugates’ of z. Put ¢(x) = xa’ + 2”2"". Then all
¢(x) are contained in some cubic ring R™(Q). A cubic resolvent
ring of ) is a cubic ring R such that Disc(R) = Disc(Q) and

R D> R™(Q).
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HCL 1l

Bhargava proved the following theorem (Higher composition laws Il
Ann. of Math. 159 (2004), 1329-1360.).

Thorem 3.1 (Bhargava)
(A, B) = (Q(A, B), R(A, B)) induces a bijection

I'\{(A, B) € L : Disc(4, B) # 0} +— {(Q,R)}/ =,

(Q is a nondeg. quartic ring, R is a cubic resolvent ring of ().

Corollary 3.2 (Bhargava)

Every quartic ring has a cubic resolvent ring. A primitive quartic ring
has a unique cubic resolvent ring up to isomorphism. In particular,
every maximal quartic ring has a unique cubic resolvent ring.

= = = =
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['a,p) and Aut(Q(A, B)

We call (A, B) primitive if ged(\7,(A, B)) = 1.
Proposition 3.3
For any nondeg. pair (A, B) € L,

I — Aut(Q(A, B)) (inj. group homo.).

If (A, B) is primitive, then the homo. is an isom.

Hence if (A, B) is primitive,

u(A, B) =
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Relative discriminant Disc(kg/k)

k: a non-Galois cubic field,
O: an order of k, f = (O : O) is square free,
K: an S,-quartic field,
K contains an order () that has a cubic resolvent ring = O,

K the Galois closure of K,
ke: the non-Galois sextic field, k C k¢ C K.
ke = k(v/a), a € k™, Nyjg(a) = d? a € Q*.
= N(Disc(kg/k)) = g* (3g € N), Disc(K) = g* Disc(k),

f=gh, h=(0k:Q).
f: the conductor of O. N(f) = f2,
fp: the p-part of § for p|f.
Put g =11, o b =L 10
= g = Disc(ke/k)

= the cond. of the unique cubic resolvent ring of O.
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Quartic rings () having cubic resolvent ring O

ag(h) = #{Q C Ok : Q has cubic resolvent ring = O},
I1(g): the group of frac. ideals of k, relatively prime to g,
H C Ix(g): the subgr. <— kg/k by class field theory,

X: the character of I;(g), ker x = H.

Then we have

(4.1) ax(h) = [T+ x()).

plh
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If Disc(k) < 0, then the number of quartic rings () with fixed cubic
resolvent ring O is given by the sum

(42) D, > ax) =2 > [0+l

glf KeKy(g) glf KeKy(g) plh

Kr(g) is the set of isomorphism classes of quartic fields K satisfying
the following conditions:

(a) The normal closure K of K over Q has Galois group S, and
contains k.

(b) The unique cubic resolvent ring of the maximal order Oy is
isomorphic to Oy = Z + g.
(c) K is totally real if Disc(k) > 0.

If Disc(k) > 0, then the sum (4.2) gives the number of such quartic
rings contained in some totally real Sy-quartic fields.
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If Disc(k) > 0, denote by K(gf) the set of isomorphism classes of
quartic fields K satisfying the conditions (a) and (b) above (including
totally imaginary fields). If Disc(k) > 0, then the number of quartic
rings contained in some quartic fields with fixed cubic resolvent ring
O is given by

43 D > axm=>_ > JIa+xxG)

glf KeKg(gfeo) glf KeKg(gfe) plh

By class field theory and quadratic reciprocity laws over the cubic
field k, we obtain the following formulae.

Y Ikl = 1€ - 1,

glf

Y Kilafoo)l =1 €I, | = 1.

olf

(4.4)
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We can rewrite the right hand sides of (4.2) and (4.3) so that we
finally obtain the following formulae:

@5) > > ax(h) = [CIP 2 - |X(0,R,)|) — 2V,

glf KeKy(g) glf
(46) > > ax(h)=>_[CIY |(2— XL (O, Ry)|) — 2°)
glf KeKy(gfeo) glf

(Disc(k) > 0).

Here w(f) = #{p: plf}, Ry =Z +g.
We see

) = #{Q C Q® k : Q has cubic resolvent ring = O}.
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We write x = (A, B) € ((9) wu(x) =1/|T';|. By Proposition 3.3,
pu(x) =1/ Aut(Q(A, B))| =1 . It follows from Theorem 3.1,
Corollary 3.2, (4.5) and (4.6) t hat if Disc(k) > 0, then

(4.7)
o u@) =Y |CIP (2 - [X(0, Ry))),
z€l\L1(O) glf
Do onla) Yo ple) =) |CIE) L 12— X0, Ry)).

ze€l\L1(O) z€l\L3(0) glf
otherwise

(4.8) > o Z|01 X(O,R,)|).

x€l\L2(0) glf

So we finally complete the proof of Theorem 1 for a non-Galois cubic
field k by Proposition 2.4, (4.7) and (4.8).
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